Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan G. Dorsey is active.

Publication


Featured researches published by Susan G. Dorsey.


Annals of Oncology | 2013

The chemotherapy-induced peripheral neuropathy outcome measures standardization study: from consensus to the first validity and reliability findings

Guido Cavaletti; David R. Cornblath; Ingemar S. J. Merkies; T. J. Postma; Emanuela Rossi; Barbara Frigeni; Paola Alberti; Jordi Bruna; Roser Velasco; Andreas A. Argyriou; H. P. Kalofonos; Dimitri Psimaras; Damien Ricard; Andrea Pace; Edvina Galiè; Chiara Briani; C. Dalla Torre; Catharina G. Faber; R. Lalisang; W. Boogerd; Dieta Brandsma; Susanne Koeppen; J. Hense; Dawn J. Storey; S. Kerrigan; Angelo Schenone; Sabrina Fabbri; Maria Grazia Valsecchi; A. Mazzeo; A. Toscano

BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating and dose-limiting complication of cancer treatment. Thus far, the impact of CIPN has not been studied in a systematic clinimetric manner. The objective of the study was to select outcome measures for CIPN evaluation and to establish their validity and reproducibility in a cross-sectional multicenter study. PATIENTS AND METHODS After literature review and a consensus meeting among experts, face/content validity were obtained for the following selected scales: the National Cancer Institute-Common Toxicity Criteria (NCI-CTC), the Total Neuropathy Score clinical version (TNSc), the modified Inflammatory Neuropathy Cause and Treatment (INCAT) group sensory sumscore (mISS), the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30, and CIPN20 quality-of-life measures. A total of 281 patients with stable CIPN were examined. Validity (correlation) and reliability studies were carried out. RESULTS Good inter-/intra-observer scores were obtained for the TNSc, mISS, and NCI-CTC sensory/motor subscales. Test-retest values were also good for the EORTC QLQ-C30 and CIPN20. Acceptable validity scores were obtained through the correlation among the measures. CONCLUSION Good validity and reliability scores were demonstrated for the set of selected impairment and quality-of-life outcome measures in CIPN. Future studies are planned to investigate the responsiveness aspects of these measures.BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating and dose-limiting complication of cancer treatment. Thus far, the impact of CIPN has not been studied in a systematic clinimetric manner. The objective of the study was to select outcome measures for CIPN evaluation and to establish their validity and reproducibility in a cross-sectional multicenter study. PATIENTS AND METHODS After literature review and a consensus meeting among experts, face/content validity were obtained for the following selected scales: the National Cancer Institute-Common Toxicity Criteria (NCI-CTC), the Total Neuropathy Score clinical version (TNSc), the modified Inflammatory Neuropathy Cause and Treatment (INCAT) group sensory sumscore (mISS), the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30, and CIPN20 quality-of-life measures. A total of 281 patients with stable CIPN were examined. Validity (correlation) and reliability studies were carried out. RESULTS Good inter-/intra-observer scores were obtained for the TNSc, mISS, and NCI-CTC sensory/motor subscales. Test-retest values were also good for the EORTC QLQ-C30 and CIPN20. Acceptable validity scores were obtained through the correlation among the measures. CONCLUSION Good validity and reliability scores were demonstrated for the set of selected impairment and quality-of-life outcome measures in CIPN. Future studies are planned to investigate the responsiveness aspects of these measures.


Science Signaling | 2012

Microtubules underlie dysfunction in duchenne muscular dystrophy.

Ramzi J. Khairallah; Guoli Shi; Sbrana F; Benjamin L. Prosser; Borroto C; Mazaitis Mj; Eric P. Hoffman; Mahurkar A; Sachs F; Yezhou Sun; Chen Yw; Roberto Raiteri; W. J. Lederer; Susan G. Dorsey; Christopher W. Ward

Decreasing microtubule density in a mouse model of muscular dystrophy reduces contraction-induced muscle injury. Microtubules and Muscle Dysfunction Duchenne muscular dystrophy (DMD) is an inherited, progressive, and eventually fatal degenerative muscle disorder that is caused by the absence of the microtubule-associated protein dystrophin. Increased Ca2+ influx and enhanced production of reactive oxygen species (ROS) are detected in DMD muscle, although it is not known how these cellular events are connected to the microtubule network and the pathology of DMD. Khairallah et al. used mice that are a model for DMD (mdx mice). They found that a modest stretch of adult mdx muscle, but not of wild-type or young mdx muscle, stimulated the production of ROS by NADPH oxidase 2 (NOX2) through the dense microtubule network as the mechanotransduction element. This pathway, known as X-ROS, triggered Ca2+ influx through stretch-activated channels. Ca2+ influx, X-ROS production, and contraction-induced muscle injury were decreased in adult mdx muscle by treatments that reduced the density of the microtubule network or that inhibited NOX2. X-ROS production was increased in young mdx muscle by treatments that increased microtubule density. Transcriptome analysis revealed increased expression of X-ROS–related genes in human DMD skeletal muscle, suggesting that drugs that reduce microtubule density or block the activity of NOX2 could slow the progression of DMD. Duchenne muscular dystrophy (DMD) is a fatal X-linked degenerative muscle disease caused by the absence of the microtubule-associated protein dystrophin, which results in a disorganized and denser microtubule cytoskeleton. In addition, mechanotransduction-dependent activation of calcium (Ca2+) and reactive oxygen species (ROS) signaling underpins muscle degeneration in DMD. We show that in muscle from adult mdx mice, a model of DMD, a brief physiologic stretch elicited microtubule-dependent activation of NADPH (reduced-form nicotinamide adenine dinucleotide phosphate) oxidase–dependent production of ROS, termed X-ROS. Further, X-ROS amplified Ca2+ influx through stretch-activated channels in mdx muscle. Consistent with the importance of the microtubules to the dysfunction in mdx muscle, muscle cells with dense microtubule structure, such as those from adult mdx mice or from young wild-type mice treated with Taxol, showed increased X-ROS production and Ca2+ influx, whereas cells with a less dense microtubule network, such as young mdx or adult mdx muscle treated with colchicine or nocodazole, showed little ROS production or Ca2+ influx. In vivo treatments that disrupted the microtubule network or inhibited NADPH oxidase 2 reduced contraction-induced injury in adult mdx mice. Furthermore, transcriptome analysis identified increased expression of X-ROS–related genes in human DMD skeletal muscle. Together, these data show that microtubules are the proximate element responsible for the dysfunction in Ca2+ and ROS signaling in DMD and could be effective therapeutic targets for intervention.


Oncogene | 2012

Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis

Yuping Mei; Jipei Liao; Jun Shen; Lei Yu; Bolin Liu; Lan Liu; Ruiyun Li; L. Ji; Susan G. Dorsey; Zhengran Jiang; Ruth L. Katz; Jian-Ying Wang; Feng Jiang

Non-small cell lung cancer (NSCLC) is the leading cause of cancer death, reflecting the need for better understanding the oncogenesis, and developing new diagnostic and therapeutic targets for the malignancy. Emerging evidence suggests that small nucleolar RNAs (snoRNAs) have malfunctioning roles in tumorigenesis. Our recent study demonstrated that small nucleolar RNA 42 (SNORA42) was overexpressed in lung tumors. Here, we investigate the role of SNORA42 in tumorigenesis of NSCLC. We simultaneously assess genomic dosages and expression levels of SNORA42 and its host gene, KIAA0907, in 10 NSCLC cell lines and a human bronchial epithelial cell line. We then determine in vitro functional significance of SNORA42 in lung cancer cell lines through gain- and loss-of-function analyses. We also inoculate cancer cells with SNORA42-siRNA into mice through either tail vein or subcutaneous injection. We finally evaluate expression level of SNORA42 on frozen surgically resected lung tumor tissues of 64 patients with stage I NSCLC by using quantitative reverse transcriptase PCR assay. Genomic amplification and associated high expression of SNORA42 rather than KIAA0907 are frequently observed in lung cancer cells, suggesting that SNORA42 overexpression is activated by its genomic amplification. SNORA42 knockdown in NSCLC cells inhibits in vitro and in vivo tumorigenicity, whereas enforced SNORA42 expression in bronchial epitheliums increases cell growth and colony formation. Such pleiotropy of SNORA42 suppression could be achieved at least partially through increased apoptosis of NSCLC cells in a p53-dependent manner. SNORA42 expression in lung tumor tissue specimens is inversely correlated with survival of NSCLC patients. Therefore, SNORA42 activation could have an oncogenic role in lung tumorigenesis and provide potential diagnostic and therapeutic targets for the malignancy.


Neuron | 2006

In Vivo Restoration of Physiological Levels of Truncated TrkB.T1 Receptor Rescues Neuronal Cell Death in a Trisomic Mouse Model

Susan G. Dorsey; Cynthia L. Renn; Laura Carim-Todd; Colleen Barrick; Linda L. Bambrick; Bruce K. Krueger; Christopher W. Ward; Lino Tessarollo

Imbalances in neurotrophins or their high-affinity Trk receptors have long been reported in neurodegenerative diseases. However, a molecular link between these gene products and neuronal cell death has not been established. In the trisomy 16 (Ts16) mouse there is increased apoptosis in the cortex, and hippocampal neurons undergo accelerated cell death that cannot be rescued by administration of brain-derived neurotrophic factor (BDNF). Ts16 neurons have normal levels of the TrkB tyrosine kinase receptor but an upregulation of the TrkB.T1 truncated receptor isoform. Here we show that restoration of the physiological level of the TrkB.T1 receptor by gene targeting rescues Ts16 cortical cell and hippocampal neuronal death. Moreover, it corrects resting Ca2+ levels and restores BDNF-induced intracellular signaling mediated by full-length TrkB in Ts16 hippocampal neurons. These data provide a direct link between neuronal cell death and abnormalities in Trk neurotrophin receptor levels.


Molecular Pain | 2011

Multimodal assessment of painful peripheral neuropathy induced by chronic oxaliplatin-based chemotherapy in mice

Cynthia L. Renn; Valentina Alda Carozzi; Peter Rhee; Danisha Gallop; Susan G. Dorsey; Guido Cavaletti

BackgroundA major clinical issue affecting 10-40% of cancer patients treated with oxaliplatin is severe peripheral neuropathy with symptoms including cold sensitivity and neuropathic pain. Rat models have been used to describe the pathological features of oxaliplatin-induced peripheral neuropathy; however, they are inadequate for parallel studies of oxaliplatins antineoplastic activity and neurotoxicity because most cancer models are developed in mice. Thus, we characterized the effects of chronic, bi-weekly administration of oxaliplatin in BALB/c mice. We first studied oxaliplatins effects on the peripheral nervous system by measuring caudal and digital nerve conduction velocities (NCV) followed by ultrastructural and morphometric analyses of dorsal root ganglia (DRG) and sciatic nerves. To further characterize the model, we examined nocifensive behavior and central nervous system excitability by in vivo electrophysiological recording of spinal dorsal horn (SDH) wide dynamic range neurons in oxaliplatin-treated miceResultsWe found significantly decreased NCV and action potential amplitude after oxaliplatin treatment along with neuronal atrophy and multinucleolated DRG neurons that have eccentric nucleoli. Oxaliplatin also induced significant mechanical allodynia and cold hyperalgesia, starting from the first week of treatment, and a significant increase in the activity of wide dynamic range neurons in the SDH.ConclusionsOur findings demonstrate that chronic treatment with oxaliplatin produces neurotoxic changes in BALB/c mice, confirming that this model is a suitable tool to conduct further mechanistic studies of oxaliplatin-related antineoplastic activity, peripheral neurotoxicity and pain. Further, this model can be used for the preclinical discovery of new neuroprotective and analgesic compounds.


Journal of Cell Biology | 2006

A kinase-deficient TrkC receptor isoform activates Arf6–Rac1 signaling through the scaffold protein tamalin

Pedro F. Esteban; Hye-Young Yoon; Jodi Becker; Susan G. Dorsey; Paola Caprari; Mary Ellen Palko; Vincenzo Coppola; H. Uri Saragovi; Paul A. Randazzo; Lino Tessarollo

Neurotrophins play an essential role in mammalian development. Most of their functions have been attributed to activation of the kinase-active Trk receptors and the p75 neurotrophin receptor. Truncated Trk receptor isoforms lacking the kinase domain are abundantly expressed during development and in the adult; however, their function and signaling capacity is largely unknown. We show that the neurotrophin-3 (NT3) TrkCT1-truncated receptor binds to the scaffold protein tamalin in a ligand-dependent manner. Moreover, NT3 initiation of this complex leads to activation of the Rac1 GTPase through adenosine diphosphate-ribosylation factor 6 (Arf6). At the cellular level, NT3 binding to TrkCT1–tamalin induces Arf6 translocation to the membrane, which in turn causes membrane ruffling and the formation of cellular protrusions. Thus, our data identify a new signaling pathway elicited by the kinase-deficient TrkCT1 receptor. Moreover, we establish NT3 as an upstream regulator of Arf6.


Cytokine | 2012

Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy

Xiao-Min Wang; Tanya J. Lehky; Joanna M. Brell; Susan G. Dorsey

Chemotherapy-induced peripheral neuropathy (CIPN), a dose-limiting neurotoxic effect of chemotherapy, is the most common reason for early cessation of cancer treatment. This can result in an increased risk of recurrence and decreased survival rate. Inflammatory cascade activation, proinflammatory cytokine upregulation, and neuro-immune communication pathways play essential roles in the initiation and progression of CIPN. Most notably, TNF-α, IL-1β, IL-6, and CCL2 are involved in neuropathic pain. Further elucidation of the role of these cytokines could lead to their development and use as biomarkers for predicting the onset of painful peripheral neuropathy and early axonal damage. In this review, we provide evidence for the involvement of cytokines in CIPN, the possible underlying mechanisms, and their use as potential therapeutic targets and biomarkers to prevent and improve the painful peripheral neuropathy related to chemotherapeutic agents.


Neuroscience | 2015

The placebo effect: From concepts to genes

Ben Colagiuri; L.A. Schenk; M.D. Kessler; Susan G. Dorsey; Luana Colloca

Despite its initial treatment as a nuisance variable, the placebo effect is now recognized as a powerful determinant of health across many different diseases and encounters. This is in light of some remarkable findings ranging from demonstrations that the placebo effect significantly modulates the response to active treatments in conditions such as pain, anxiety, Parkinsons disease, and some surgical procedures. Here, we review pioneering studies and recent advances in behavioral, neurobiological, and genetic influences on the placebo effect. Consistent with recent conceptualizations, the placebo effect is presented as the product of a general expectancy learning mechanism in which verbal, conditioned, and social cues are centrally integrated to change behaviors and outcomes. Examples of the integration of verbal and conditioned cues, such as instructed reversal of placebo effects are also incorporated into this model. We discuss neuroimaging studies that have identified key brain regions and modulatory mechanisms underlying placebo effects using well-established behavioral paradigms. Finally, we present a synthesis of recent genetics studies on the placebo effect, highlighting a promising link between genetic variants in the dopamine, opioid, serotonin, and endocannabinoid pathways and placebo responsiveness. Greater understanding of the behavioral, neurobiological, and genetic influences on the placebo effect is critical for evaluating medical interventions and may allow health professionals to tailor and personalize interventions in order to maximize treatment outcomes in clinical settings.


PLOS ONE | 2013

Bortezomib-induced painful peripheral neuropathy: an electrophysiological, behavioral, morphological and mechanistic study in the mouse

Valentina Alda Carozzi; Cynthia L. Renn; Michela Bardini; Grazia Fazio; Alessia Chiorazzi; Cristina Meregalli; Norberto Oggioni; Kathleen Shanks; Marina Quartu; Maria Pina Serra; Barbara Sala; Guido Cavaletti; Susan G. Dorsey

Bortezomib is the first proteasome inhibitor with significant antineoplastic activity for the treatment of relapsed/refractory multiple myeloma as well as other hematological and solid neoplasms. Peripheral neurological complications manifesting with paresthesias, burning sensations, dysesthesias, numbness, sensory loss, reduced proprioception and vibratory sensitivity are among the major limiting side effects associated with bortezomib therapy. Although bortezomib-induced painful peripheral neuropathy is clinically easy to diagnose and reliable models are available, its pathophysiology remains partly unclear. In this study we used well-characterized immune-competent and immune-compromised mouse models of bortezomib-induced painful peripheral neuropathy. To characterize the drug-induced pathological changes in the peripheral nervous system, we examined the involvement of spinal cord neuronal function in the development of neuropathic pain and investigated the relevance of the immune response in painful peripheral neuropathy induced by bortezomib. We found that bortezomib treatment induced morphological changes in the spinal cord, dorsal roots, dorsal root ganglia (DRG) and peripheral nerves. Neurophysiological abnormalities and specific functional alterations in Aδ and C fibers were also observed in peripheral nerve fibers. Mice developed mechanical allodynia and functional abnormalities of wide dynamic range neurons in the dorsal horn of spinal cord. Bortezomib induced increased expression of the neuronal stress marker activating transcription factor-3 in most DRG. Moreover, the immunodeficient animals treated with bortezomib developed a painful peripheral neuropathy with the same features observed in the immunocompetent mice. In conclusion, this study extends the knowledge of the sites of damage induced in the nervous system by bortezomib administration. Moreover, a selective functional vulnerability of peripheral nerve fiber subpopulations was found as well as a change in the electrical activity of wide dynamic range neurons of dorsal horn of spinal cord. Finally, the immune response is not a key factor in the development of morphological and functional damage induced by bortezomib in the peripheral nervous system.


The Journal of Neuroscience | 2014

Downregulation of miR-23a and miR-27a following Experimental Traumatic Brain Injury Induces Neuronal Cell Death through Activation of Proapoptotic Bcl-2 Proteins

Boris Sabirzhanov; Zaorui Zhao; Bogdan A. Stoica; David J. Loane; Junfang Wu; Carlos Borroto; Susan G. Dorsey; Alan I. Faden

MicroRNAs (miRs) are small noncoding RNAs that negatively regulate gene expression at the post-transcriptional level. To identify miRs that may regulate neuronal cell death after experimental traumatic brain injury (TBI), we profiled miR expression changes during the first several days after controlled cortical impact (CCI) in mice. miR-23a and miR-27a were rapidly downregulated in the injured cortex in the first hour after TBI. These changes coincided with increased expression of the proapoptotic Bcl-2 family members Noxa, Puma, and Bax. In an etoposide-induced in vitro model of apoptosis in primary cortical neurons, miR-23a and miR-27a were markedly downregulated as early as 1 h after exposure, before the upregulation of proapoptotic Bcl-2 family molecules. Administration of miR-23a and miR-27a mimics attenuated etoposide-induced changes in Noxa, Puma, and Bax, reduced downstream markers of caspase-dependent (cytochrome c release and caspase activation) and caspase-independent (apoptosis-inducing factor release) pathways, and limited neuronal cell death. In contrast, miRs hairpin inhibitors enhanced etoposide-induced neuronal apoptosis and caspase activation. Importantly, administration of miR-23a and miR-27a mimics significantly reduced activation of Puma, Noxa, and Bax as well as attenuated markers of caspase-dependent and -independent apoptosis after TBI. Furthermore, miR-23a and miR-27a mimics significantly attenuated cortical lesion volume and neuronal cell loss in the hippocampus after TBI. These findings indicate that post-traumatic decreases in miR-23a and miR-27a contribute to neuronal cell death after TBI by upregulating proapoptotic Bcl-2 family members, thus providing a novel therapeutic target.

Collaboration


Dive into the Susan G. Dorsey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Cavaletti

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna Jo McCloskey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Patricia A. Grady

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge