Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan J. Allen is active.

Publication


Featured researches published by Susan J. Allen.


Nature Genetics | 2006

The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4

John A. Sayer; Edgar A. Otto; John F. O'Toole; Gudrun Nürnberg; Michael A. Kennedy; Christian F. W. Becker; Hans Christian Hennies; Juliana Helou; Massimo Attanasio; Blake V. Fausett; Boris Utsch; Hemant Khanna; Yan Liu; Iain A. Drummond; Isao Kawakami; Takehiro Kusakabe; Motoyuki Tsuda; Li Ma; Hwankyu Lee; Ronald G. Larson; Susan J. Allen; Christopher J. Wilkinson; Erich A. Nigg; Chengchao Shou; Concepción Lillo; David S. Williams; Bernd Hoppe; Markus J. Kemper; Thomas J. Neuhaus; Melissa A. Parisi

The molecular basis of nephronophthisis, the most frequent genetic cause of renal failure in children and young adults, and its association with retinal degeneration and cerebellar vermis aplasia in Joubert syndrome are poorly understood. Using positional cloning, we here identify mutations in the gene CEP290 as causing nephronophthisis. It encodes a protein with several domains also present in CENPF, a protein involved in chromosome segregation. CEP290 (also known as NPHP6) interacts with and modulates the activity of ATF4, a transcription factor implicated in cAMP-dependent renal cyst formation. NPHP6 is found at centrosomes and in the nucleus of renal epithelial cells in a cell cycle–dependent manner and in connecting cilia of photoreceptors. Abrogation of its function in zebrafish recapitulates the renal, retinal and cerebellar phenotypes of Joubert syndrome. Our findings help establish the link between centrosome function, tissue architecture and transcriptional control in the pathogenesis of cystic kidney disease, retinal degeneration, and central nervous system development.


Journal of Clinical Investigation | 2013

ADCK4 mutations promote steroid-Resistant nephrotic syndrome through CoQ10 biosynthesis disruption

Shazia Ashraf; Heon Yung Gee; Stéphanie Woerner; Letian X. Xie; Virginia Vega-Warner; Svjetlana Lovric; Humphrey Fang; Xuewen Song; Daniel C. Cattran; Carmen Avila-Casado; Andrew D. Paterson; Patrick Nitschke; Christine Bole-Feysot; Pierre Cochat; Julian Esteve-Rudd; Birgit Haberberger; Susan J. Allen; Weibin Zhou; Rannar Airik; Edgar A. Otto; Moumita Barua; Mohamed Al-Hamed; Jameela A. Kari; Jonathan Evans; Agnieszka Bierzynska; Moin A. Saleem; Detlef Bockenhauer; Robert Kleta; Sherif El Desoky; Duygu Övünç Hacıhamdioğlu

Identification of single-gene causes of steroid-resistant nephrotic syndrome (SRNS) has furthered the understanding of the pathogenesis of this disease. Here, using a combination of homozygosity mapping and whole human exome resequencing, we identified mutations in the aarF domain containing kinase 4 (ADCK4) gene in 15 individuals with SRNS from 8 unrelated families. ADCK4 was highly similar to ADCK3, which has been shown to participate in coenzyme Q10 (CoQ10) biosynthesis. Mutations in ADCK4 resulted in reduced CoQ10 levels and reduced mitochondrial respiratory enzyme activity in cells isolated from individuals with SRNS and transformed lymphoblasts. Knockdown of adck4 in zebrafish and Drosophila recapitulated nephrotic syndrome-associated phenotypes. Furthermore, ADCK4 was expressed in glomerular podocytes and partially localized to podocyte mitochondria and foot processes in rat kidneys and cultured human podocytes. In human podocytes, ADCK4 interacted with members of the CoQ10 biosynthesis pathway, including COQ6, which has been linked with SRNS and COQ7. Knockdown of ADCK4 in podocytes resulted in decreased migration, which was reversed by CoQ10 addition. Interestingly, a patient with SRNS with a homozygous ADCK4 frameshift mutation had partial remission following CoQ10 treatment. These data indicate that individuals with SRNS with mutations in ADCK4 or other genes that participate in CoQ10 biosynthesis may be treatable with CoQ10.


PLOS Genetics | 2009

A Systematic Approach to Mapping Recessive Disease Genes in Individuals from Outbred Populations

Friedhelm Hildebrandt; Saskia F. Heeringa; Franz Rüschendorf; Massimo Attanasio; Gudrun Nürnberg; Christian Becker; Dominik Seelow; Norbert Huebner; Gil Chernin; Christopher N. Vlangos; Weibin Zhou; John F. O'Toole; Bethan E. Hoskins; Matthias Wolf; Bernward Hinkes; Hassan Chaib; Shazia Ashraf; Dominik S. Schoeb; Bugsu Ovunc; Susan J. Allen; Virginia Vega-Warner; Eric Wise; Heather M. Harville; Robert H. Lyons; Joseph Washburn; James W. MacDonald; Peter Nürnberg; Edgar A. Otto

The identification of recessive disease-causing genes by homozygosity mapping is often restricted by lack of suitable consanguineous families. To overcome these limitations, we apply homozygosity mapping to single affected individuals from outbred populations. In 72 individuals of 54 kindred ascertained worldwide with known homozygous mutations in 13 different recessive disease genes, we performed total genome homozygosity mapping using 250,000 SNP arrays. Likelihood ratio Z-scores (ZLR) were plotted across the genome to detect ZLR peaks that reflect segments of homozygosity by descent, which may harbor the mutated gene. In 93% of cases, the causative gene was positioned within a consistent ZLR peak of homozygosity. The number of peaks reflected the degree of inbreeding. We demonstrate that disease-causing homozygous mutations can be detected in single cases from outbred populations within a single ZLR peak of homozygosity as short as 2 Mb, containing an average of only 16 candidate genes. As many specialty clinics have access to cohorts of individuals from outbred populations, and as our approach will result in smaller genetic candidate regions, the new strategy of homozygosity mapping in single outbred individuals will strongly accelerate the discovery of novel recessive disease genes.


Nature Genetics | 2012

FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair

Weibin Zhou; Edgar A. Otto; Andrew Cluckey; Rannar Airik; Toby W. Hurd; Moumita Chaki; Katrina A. Diaz; Francis P. Lach; Geoffrey R Bennett; Heon Yung Gee; Amiya K. Ghosh; Sivakumar Natarajan; Supawat Thongthip; Uma Veturi; Susan J. Allen; Sabine Janssen; Gokul Ramaswami; Joanne Dixon; Felix Burkhalter; Martin Spoendlin; Holger Moch; Michael J. Mihatsch; Jérôme Verine; Richard Reade; Hany Soliman; Michel Godin; Denes Kiss; Guido Monga; Gianna Mazzucco; Kerstin Amann

Chronic kidney disease (CKD) represents a major health burden. Its central feature of renal fibrosis is not well understood. By exome sequencing, we identified mutations in FAN1 as a cause of karyomegalic interstitial nephritis (KIN), a disorder that serves as a model for renal fibrosis. Renal histology in KIN is indistinguishable from that of nephronophthisis, except for the presence of karyomegaly. The FAN1 protein has nuclease activity and acts in DNA interstrand cross-link (ICL) repair within the Fanconi anemia DNA damage response (DDR) pathway. We show that cells from individuals with FAN1 mutations have sensitivity to the ICL-inducing agent mitomycin C but do not exhibit chromosome breakage or cell cycle arrest after diepoxybutane treatment, unlike cells from individuals with Fanconi anemia. We complemented ICL sensitivity with wild-type FAN1 but not with cDNA having mutations found in individuals with KIN. Depletion of fan1 in zebrafish caused increased DDR, apoptosis and kidney cysts. Our findings implicate susceptibility to environmental genotoxins and inadequate DNA repair as novel mechanisms contributing to renal fibrosis and CKD.


Journal of Medical Genetics | 2011

Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy

Edgar A. Otto; Gokul Ramaswami; Sabine Janssen; Moumita Chaki; Susan J. Allen; Weibin Zhou; Rannar Airik; Toby W. Hurd; Amiya K. Ghosh; Matthias Wolf; Bernd Hoppe; Thomas J. Neuhaus; Detlef Bockenhauer; David V. Milford; Neveen A. Soliman; Corinne Antignac; Sophie Saunier; Colin A. Johnson; Friedhelm Hildebrandt

Background Nephronophthisis associated ciliopathies (NPHP-AC) comprise a group of autosomal recessive cystic kidney diseases that includes nephronophthisis (NPHP), Senior-Loken syndrome (SLS), Joubert syndrome (JBTS), and Meckel-Gruber syndrome (MKS). To date, causative mutations in NPHP-AC have been described for 18 different genes, rendering mutation analysis tedious and expensive. To overcome the broad genetic locus heterogeneity, a strategy of DNA pooling with consecutive massively parallel resequencing (MPR) was devised. Methods In 120 patients with severe NPHP-AC phenotypes, five pools of genomic DNA with 24 patients each were prepared which were used as templates in order to PCR amplify all 376 exons of 18 NPHP-AC genes (NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, GLIS2, RPGRIP1L, NEK8, TMEM67, INPP5E, TMEM216, AHI1, ARL13B, CC2D2A, TTC21B, MKS1, and XPNPEP3). PCR products were then subjected to MPR on an Illumina Genome-Analyser and mutations were subsequently assigned to their respective mutation carrier via CEL I endonuclease based heteroduplex screening and confirmed by Sanger sequencing. Results For proof of principle, DNA from patients with known mutations was used and detection of 22 out of 24 different alleles (92% sensitivity) was demonstrated. MPR led to the molecular diagnosis in 30/120 patients (25%) and 54 pathogenic mutations (27 novel) were identified in seven different NPHP-AC genes. Additionally, in 24 patients only single heterozygous variants of unknown significance were found. Conclusions The combined approach of DNA pooling followed by MPR strongly facilitates mutation analysis in broadly heterogeneous single gene disorders. The lack of mutations in 75% of patients in this cohort indicates further extensive heterogeneity in NPHP-AC.


American Journal of Human Genetics | 2013

ZMYND10 Is Mutated in Primary Ciliary Dyskinesia and Interacts with LRRC6

Maimoona A. Zariwala; Heon Yung Gee; Małgorzata Kurkowiak; Dalal A Al-Mutairi; Margaret W. Leigh; Toby W. Hurd; Rim Hjeij; Sharon D. Dell; Moumita Chaki; Gerard W. Dougherty; Mohamed Adan; Philip Spear; Julian Esteve-Rudd; Niki T. Loges; Margaret Rosenfeld; Katrina A. Diaz; Heike Olbrich; Whitney E. Wolf; Eamonn Sheridan; Trevor Batten; Jan Halbritter; Jonathan D. Porath; Stefan Kohl; Svjetlana Lovric; Daw Yang Hwang; Jessica E. Pittman; Kimberlie A. Burns; Thomas W. Ferkol; Scott D. Sagel; Kenneth N. Olivier

Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Additionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith defects and that knockdown in Xenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing ZMYND10 and LRRC6 is necessary for motile ciliary function.


Journal of Medical Genetics | 2007

Mutation analysis of NPHP6/CEP290 in patients with Joubert syndrome and Senior-Løken syndrome

Juliana Helou; Edgar A. Otto; Massimo Attanasio; Susan J. Allen; Melissa A. Parisi; Ian A. Glass; Boris Utsch; Seema Hashmi; Elisa Fazzi; Heymut Omran; John F. O'Toole; John A. Sayer; Friedhelm Hildebrandt

Background: Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that constitutes the most common genetic cause of renal failure in the first three decades of life. Using positional cloning, six genes (NPHP1-6) have been identified as mutated in NPHP. In Joubert syndrome (JBTS), NPHP may be associated with cerebellar vermis aplasia/hypoplasia, retinal degeneration and mental retardation. In Senior–Løken syndrome (SLSN), NPHP is associated with retinal degeneration. Recently, mutations in NPHP6/CEP290 were identified as a new cause of JBTS. Methods: Mutational analysis was performed on a worldwide cohort of 75 families with SLSN, 99 families with JBTS and 21 families with isolated nephronophthisis. Results: Six novel and six known truncating mutations, one known missense mutation and one novel 3 bp pair in-frame deletion were identified in a total of seven families with JBTS, two families with SLSN and one family with isolated NPHP.


Kidney International | 2011

Genotype–phenotype correlation in 440 patients with NPHP-related ciliopathies

Moumita Chaki; Julia Hoefele; Susan J. Allen; Gokul Ramaswami; Sabine Janssen; Carsten Bergmann; John R. Heckenlively; Edgar A. Otto; Friedhelm Hildebrandt

Nephronophthisis (NPHP), an autosomal recessive cystic kidney disease, is the most frequent genetic cause for end-stage renal failure in the first three decades of life. Mutations in 13 genes (NPHP1-NPHP11, AHI1, and CC2D2A) cause NPHP with ubiquitous expression of the corresponding proteins consistent with the multiorgan involvement of NPHP-related diseases. The genotype-phenotype correlation in these ciliopathies can be explained by gene locus heterogeneity, allelism, and the impact of modifier genes. In some NPHP-related ciliopathies, the nature of the recessive mutations determines disease severity. In order to define the genotype-phenotype correlation more clearly, we evaluated a worldwide cohort of 440 patients from 365 families with NPHP-related ciliopathies, in whom both disease-causing alleles were identified. The phenotypes were ranked in the order of severity from degenerative to degenerative/dysplastic to dysplastic. A genotype of two null alleles caused a range of phenotypes, with an increasing order of severity of NPHP1, NPHP3, NPHP4, NPHP5, NPHP2, NPHP10, NPHP6, to AHI1. Only NPHP6 showed allelic influences on the phenotypes; the presence of two null mutations caused dysplastic phenotypes, whereas at least one missense allele rescued it to a milder degenerative phenotype. We also found nine novel mutations in the NPHP genes. Thus, our studies have important implications for genetic counseling and planning of renal replacement therapy.


Human Genetics | 2011

Mutation analysis in Bardet–Biedl syndrome by DNA pooling and massively parallel resequencing in 105 individuals

Sabine Janssen; Gokul Ramaswami; Erica E. Davis; Toby W. Hurd; Rannar Airik; Jennifer M. Kasanuki; Lauren Van Der Kraak; Susan J. Allen; Philip L. Beales; Nicholas Katsanis; Edgar A. Otto; Friedhelm Hildebrandt

Bardet–Biedl syndrome (BBS) is a rare, primarily autosomal-recessive ciliopathy. The phenotype of this pleiotropic disease includes retinitis pigmentosa, postaxial polydactyly, truncal obesity, learning disabilities, hypogonadism and renal anomalies, among others. To date, mutations in 15 genes (BBS1–BBS14, SDCCAG8) have been described to cause BBS. The broad genetic locus heterogeneity renders mutation screening time-consuming and expensive. We applied a strategy of DNA pooling and subsequent massively parallel resequencing (MPR) to screen individuals affected with BBS from 105 families for mutations in 12 known BBS genes. DNA was pooled in 5 pools of 21 individuals each. All 132 coding exons of BBS1–BBS12 were amplified by conventional PCR. Subsequent MPR was performed on an Illumina Genome Analyzer II™ platform. Following mutation identification, the mutation carrier was assigned by CEL I endonuclease heteroduplex screening and confirmed by Sanger sequencing. In 29 out of 105 individuals (28%), both mutated alleles were identified in 10 different BBS genes. A total of 35 different disease-causing mutations were confirmed, of which 18 mutations were novel. In 12 additional families, a total of 12 different single heterozygous changes of uncertain pathogenicity were found. Thus, DNA pooling combined with MPR offers a valuable strategy for mutation analysis of large patient cohorts, especially in genetically heterogeneous diseases such as BBS.


American Journal of Human Genetics | 2014

Mutations in EMP2 cause childhood-onset nephrotic syndrome.

Heon Yung Gee; Shazia Ashraf; Xiaoyang Wan; Virginia Vega-Warner; Julian Esteve-Rudd; Svjetlana Lovric; Humphrey Fang; Toby W. Hurd; Carolin E. Sadowski; Susan J. Allen; Edgar A. Otto; Emine Korkmaz; Joseph Washburn; Shawn Levy; David S. Williams; Sevcan A. Bakkaloglu; Anna Zolotnitskaya; Fatih Ozaltin; Weibin Zhou; Friedhelm Hildebrandt

Nephrotic syndrome (NS) is a genetically heterogeneous group of diseases that are divided into steroid-sensitive NS (SSNS) and steroid-resistant NS (SRNS). SRNS inevitably leads to end-stage kidney disease, and no curative treatment is available. To date, mutations in more than 24 genes have been described in Mendelian forms of SRNS; however, no Mendelian form of SSNS has been described. To identify a genetic form of SSNS, we performed homozygosity mapping, whole-exome sequencing, and multiplex PCR followed by next-generation sequencing. We thereby detected biallelic mutations in EMP2 (epithelial membrane protein 2) in four individuals from three unrelated families affected by SRNS or SSNS. We showed that EMP2 exclusively localized to glomeruli in the kidney. Knockdown of emp2 in zebrafish resulted in pericardial effusion, supporting the pathogenic role of mutated EMP2 in human NS. At the cellular level, we showed that knockdown of EMP2 in podocytes and endothelial cells resulted in an increased amount of CAVEOLIN-1 and decreased cell proliferation. Our data therefore identify EMP2 mutations as causing a recessive Mendelian form of SSNS.

Collaboration


Dive into the Susan J. Allen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weibin Zhou

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shazia Ashraf

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rannar Airik

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Eric Wise

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge