Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan J. Gross is active.

Publication


Featured researches published by Susan J. Gross.


Obstetrics & Gynecology | 2008

Maternal thyroid hypofunction and pregnancy outcome.

Jane Cleary-Goldman; Fergal D. Malone; Geralyn Lambert-Messerlian; Lisa M. Sullivan; Jacob A. Canick; T. Flint Porter; David A. Luthy; Susan J. Gross; Diana W. Bianchi; Mary E. D’Alton

OBJECTIVE: To estimate whether maternal thyroid hypofunction is associated with complications. METHODS: A total of 10,990 patients had first- and second-trimester serum assayed for thyroid-stimulating hormone (TSH), free thyroxine (freeT4), and antithyroglobulin and antithyroid peroxidase antibodies. Thyroid hypofunction was defined as 1) subclinical hypothyroidism: TSH levels above the 97.5th percentile and free T4 between the 2.5th and 97.5th percentiles or 2) hypothyroxinemia: TSH between the 2.5th and 97.5th percentiles and free T4 below the 2.5th percentile. Adverse outcomes were evaluated. Patients with thyroid hypofunction were compared with euthyroid patients (TSH and free T4 between the 2.5th and 97.5th percentiles). Patients with and without antibodies were compared. Multivariable logistic regression analysis adjusted for confounders was used. RESULTS: Subclinical hypothyroidism was documented in 2.2% (240 of 10,990) in the first and 2.2% (243 of 10,990) in the second trimester. Hypothyroxinemia was documented in 2.1% (232 of 10,990) in the first and 2.3% (247 of 10,990) in the second trimester. Subclinical hypothyroidism was not associated with adverse outcomes. In the first trimester, hypothyroxinemia was associated with preterm labor (adjusted odds ratio [aOR] 1.62; 95% confidence interval [CI] 1.00–2.62) and macrosomia (aOR 1.97; 95% CI 1.37–2.83). In the second trimester, it was associated with gestational diabetes (aOR 1.7; 95% CI 1.02–2.84). Fifteen percent (1,585 of 10,990) in the first and 14% (1,491 of 10,990) in the second trimester had antithyroid antibodies. When both antibodies were positive in either trimester, there was an increased risk for preterm premature rupture of membranes (P=.002 and P<.001, respectively). CONCLUSION: Maternal thyroid hypofunction is not associated with a consistent pattern of adverse outcomes. LEVEL OF EVIDENCE: II


BMJ | 2007

Fetal growth in early pregnancy and risk of delivering low birth weight infant: prospective cohort study

Radek Bukowski; Gordon C. S. Smith; Fergal D. Malone; Robert H. Ball; David A. Nyberg; Christine H. Comstock; Gary D.V. Hankins; Richard L. Berkowitz; Susan J. Gross; Lorraine Dugoff; Sabrina D. Craigo; Ilan E. Timor-Tritsch; Stephen R. Carr; Honor M. Wolfe; Mary E. D'Alton

Objective To determine if first trimester fetal growth is associated with birth weight, duration of pregnancy, and the risk of delivering a small for gestational age infant. Design Prospective cohort study of 38 033 pregnancies between 1999 and 2003. Setting 15 centres representing major regions of the United States. Participants 976 women from the original cohort who conceived as the result of assisted reproductive technology, had a first trimester ultrasound measurement of fetal crown-rump length, and delivered live singleton infants without evidence of chromosomal or congenital abnormalities. First trimester growth was expressed as the difference between the observed and expected size of the fetus, expressed as equivalence to days of gestational age. Main outcome measures Birth weight, duration of pregnancy, and risk of delivering a small for gestational age infant. Results For each one day increase in the observed size of the fetus, birth weight increased by 28.2 (95% confidence interval 14.6 to 41.2) g. The association was substantially attenuated by adjustment for duration of pregnancy (adjusted coefficient 17.1 (6.6 to 27.5) g). Further adjustments for maternal characteristics and complications of pregnancy did not have a significant effect. The risk of delivering a small for gestational age infant decreased with increasing size in the first trimester (odds ratio for a one day increase 0.87, 0.81 to 0.94). The association was not materially affected by adjustment for maternal characteristics or complications of pregnancy. Conclusion Variation in birth weight may be determined, at least in part, by fetal growth in the first 12 weeks after conception through effects on timing of delivery and fetal growth velocity.


Prenatal Diagnosis | 2013

Position statement from the Aneuploidy Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis

Peter Benn; Antoni Borell; Rossa W.K. Chiu; Howard Cuckle; Lorraine Dugoff; Brigitte H. W. Faas; Susan J. Gross; Jo-Ann Johnson; Ron Maymon; Mary E. Norton; Anthony Odibo; Peter C. J. I. Schielen; Kevin Spencer; Tianhua Huang; Dave Wright; Yuval Yaron

Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, USA Prenatal Diagnosis Unit, Institute of Gynecology, Obstetrics and Neonatology, Hospital Clinic, Maternitat Campus, University of Barcelona Medical School, Catalonia, Spain Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, USA Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands Department of Obstetrics and Gynecology, Albert Einstein College of Medicine, New York, NY, USA Department of Obstetrics and Gynecology, University of Calgary, Calgary, AB, Canada Department of Obstetrics and Gynecology, Assaf Harofe Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA Department of Obstetrics and Gynecology, Washington University in St Louis, St Louis, MO, USA Laboratory for Infectious Diseases and Perinatal Screening, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands Prenatal Screening Unit, Clinical Biochemistry Department, Barking Havering & Redbridge University Hospitals, King George Hospital, Goodmayes, UK Genetics Program, North York General Hospital, Toronto, ON, Canada Department of Mathematics and Statistics, University of Plymouth, Plymouth, UK Prenatal Diagnosis Unit, Genetic Institute, Sourasky Medical Center, Tel Aviv, Israel *Correspondence to: Peter Benn. E-mail: [email protected] This Statement replaces the January 2011 Statement (Prenatal Diagnosis 2011;31:519–522) and the Rapid Response Statement (Prenatal Diagnosis 2012;32:1–2).


Prenatal Diagnosis | 2012

Prenatal Detection of Down Syndrome using Massively Parallel Sequencing (MPS): a rapid response statement from a committee on behalf of the Board of the International Society for Prenatal Diagnosis, 24 October 2011

Peter Benn; Antoni Borrell; Howard Cuckle; Lorraine Dugoff; Susan J. Gross; Jo-Ann Johnson; Ron Maymon; Anthony Odibo; Peter C. J. I. Schielen; Kevin Spencer; Dave Wright; Yuval Yaron

Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, USA Prenatal Diagnosis Unit, Institute of Gynecology, Obstetrics and Neonatology, Hospital Clinic, Maternitat Campus, University of Barcelona Medical School, Catalonia, Spain Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, USA Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA Department of Obstetrics and Gynecology, Albert Einstein College of Medicine, New York, NY, USA Department of Obstetrics and Gynecology, University of Calgary, Calgary, AB, Canada Department of Obstetrics and Gynecology, Assaf Harofe Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel Department of Obstetrics and Gynecology, Washington University in St Louis, St Louis, MO, USA Laboratory for Infectious Diseases and Perinatal Screening, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands Prenatal Screening Unit, Clinical Biochemistry Department, Barking Havering and Redbridge University Hospital, King George Hospital, Goodmayes, UK Department of Mathematics and Statistics, University of Plymouth, Plymouth, UK Prenatal Diagnosis Unit, Genetic Institute, Sourasky Medical Center, Tel Aviv, Israel *Correspondence to: Peter Benn. E-mail: [email protected]


Obstetrics & Gynecology | 2005

First-trimester septated cystic hygroma: prevalence, natural history, and pediatric outcome.

Fergal D. Malone; Robert H. Ball; David A. Nyberg; Christine H. Comstock; George R. Saade; Richard L. Berkowitz; Susan J. Gross; Lorraine Dugoff; Sabrina D. Craigo; Ilan E. Timor-Tritsch; Stephen R. Carr; Honor M. Wolfe; Kimberly Dukes; Jacob A. Canick; Diana W. Bianchi; Mary E. D'Alton

Objective: To estimate prevalence, natural history, and outcome of septated cystic hygroma in the first trimester in the general obstetric population, and to differentiate this finding from simple increased nuchal translucency. Methods: Patients at 10.3–13.6 weeks of gestation underwent nuchal translucency sonography as part of a multicenter clinical trial. Septated cystic hygroma cases were offered chorionic villi sampling for karyotype, and targeted fetal anatomical and cardiac evaluations. Survivors were followed up for fetal and long-term pediatric outcome (median 25 months, range 12–50 months). Cases of septated cystic hygroma were also compared with cases of simple increased nuchal translucency. Results: There were 134 cases of cystic hygroma (2 lost to follow-up) among 38,167 screened patients (1 in 285). Chromosomal abnormalities were diagnosed in 67 (51%), including 25 trisomy-21, 19 Turner syndrome, 13 trisomy-18, and 10 others. Major structural fetal malformations (primarily cardiac and skeletal) were diagnosed in 22 of the remaining 65 cases (34%). There were 5 cases (8%) of fetal death and 15 cases of elective pregnancy termination without evidence of abnormality. One of 23 (4%) normal survivors was diagnosed with cerebral palsy and developmental delay. Overall, survival with normal pediatric outcome was confirmed in 17% of cases (22 of 132). Compared with simple increased nuchal translucency, cystic hygroma has 5-fold, 12-fold, and 6-fold increased risk of aneuploidy, cardiac malformation, and perinatal death, respectively. Conclusion: First-trimester cystic hygroma was a frequent finding in a general obstetric screening program. It has the strongest prenatal association with aneuploidy described to date, with significantly worse outcome compared with simple increased nuchal translucency. Most pregnancies with normal evaluation at the completion of the second trimester resulted in a healthy infant with a normal pediatric outcome. Level of Evidence: II-2


Genetics in Medicine | 2008

Carrier screening in individuals of Ashkenazi Jewish descent.

Susan J. Gross; Beth A. Pletcher; Kristin G. Monaghan

Disclaimer: This guideline is designed primarily as an educational resource for medical geneticists and other health care providers to help them provide quality medical genetic services. Adherence to this guideline does not necessarily assure a successful medical outcome. This guideline should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the geneticist should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. It may be prudent, however, to document in the patients record the rationale for any significant deviation from this guideline.


PLOS Medicine | 2009

Preconceptional Folate Supplementation and the Risk of Spontaneous Preterm Birth: A Cohort Study

Radek Bukowski; Fergal D. Malone; Flint Porter; David A. Nyberg; Christine H. Comstock; Gary D.V. Hankins; Keith Eddleman; Susan J. Gross; Lorraine Dugoff; Sabrina D. Craigo; Ilan E. Timor-Tritsch; Stephen R. Carr; Honor M. Wolfe; Mary E. D'Alton

In an analysis of a cohort of pregnant women, Radek Bukowski and colleagues describe an association between taking folic acid supplements and a reduction in the risk of preterm birth.


Prenatal Diagnosis | 2015

Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis

Peter Benn; Antoni Borrell; Rossa W.K. Chiu; Howard Cuckle; Lorraine Dugoff; Brigitte H. W. Faas; Susan J. Gross; Tianhua Huang; Jo-Ann Johnson; Ron Maymon; Mary E. Norton; Anthony Odibo; Peter C. J. I. Schielen; Kevin Spencer; Dave Wright; Yuval Yaron

President President-Elect Past President Secretary Treasurer Lucas Otano MD, PhD (Argentina) Ignatia B. Van den Veyver MD (USA) Jan M.M. van Lith MD, PhD (Netherlands) Louise Wilkins-Haug MD (USA) Antoni Borrell MD, PhD (Spain) Directors Peter Benn PhD, DSc (USA) Lyn Chitty PhD (UK) Rossa Chiu (Hong Kong) Roland Devlieger MD, PhD (Belgium) Sylvie Langlois MD, CCMG (Canada) Anthony O. Odibo MD, MSCE (USA) R. Doug Wilson MD, Msc, FRCSC (Canada) Yuval Yaron MD (Israel) Diana W. Bianchi MD, ex officio (USA) Position Statement from the Chromosome Abnormality Screening Committee on Behalf of the Board of the International Society for Prenatal Diagnosis


Genetics in Medicine | 2014

Fetoplacental mosaicism: potential implications for false-positive and false-negative noninvasive prenatal screening results

Francesca Romana Grati; Francesca Malvestiti; Jose Carlos Ferreira; Komal Bajaj; Elisa Gaetani; Cristina Agrati; Beatrice Grimi; Francesca Dulcetti; Anna Maria Ruggeri; Simona De Toffol; Federico Maggi; Ronald J. Wapner; Susan J. Gross; Giuseppe Simoni

Purpose:Noninvasive prenatal screening for fetal aneuploidy analyzes cell-free fetal DNA circulating in the maternal plasma. Because cell-free fetal DNA is mainly of placental trophoblast origin, false-positive and false-negative findings may result from placental mosaicism. The aim of this study was to calculate the potential contribution of placental mosaicism in discordant results of noninvasive prenatal screening.Methods:We performed a retrospective audit of 52,673 chorionic villus samples in which cytogenetic analysis of the cytotrophoblast (direct) and villus mesenchyme (culture) was performed, which was followed by confirmatory amniocentesis in chorionic villi mosaic cases. Using cases in which cytogenetic discordance between cytotrophoblast and amniotic fluid samples was identified, we calculated the potential contribution of cell line–specific mosaicism to false-positive and false-negative results of noninvasive prenatal screening.Results:The false-positive rate, secondary to the presence of abnormal cell line with common trisomies in cytotrophoblast and normal amniotic fluid, ranged from 1/1,065 to 1/3,931 at 10% and 100% mosaicism, respectively; the false-negative rate was calculated from cases of true fetal mosaicism, in which a mosaic cell line was absent in cytotrophoblast and present in the fetus; this occurred in 1/107 cases.Conclusion:Despite exciting advances, underlying biologic mechanisms will never allow 100% sensitivity or specificity.Genet Med 16 8, 620–624.Genetics in Medicine (2014); 16 8, 620–624. doi:10.1038/gim.2014.3


Obstetrics & Gynecology | 2009

Role of second-trimester genetic sonography after Down syndrome screening.

Kjersti Aagaard-Tillery; Fergal D. Malone; David A. Nyberg; T. Flint Porter; Howard Cuckle; Karin Fuchs; Lisa M. Sullivan; Christine H. Comstock; George R. Saade; Keith Eddleman; Susan J. Gross; Lorraine Dugoff; Sabrina D. Craigo; Ilan E. Timor-Tritsch; Stephen R. Carr; Honor M. Wolfe; Diana W. Bianchi; Mary E. D'Alton

OBJECTIVE: To estimate the effectiveness of second-trimester genetic sonography in modifying Down syndrome screening test results. METHODS: The First and Second Trimester Evaluation of Risk (FASTER) aneuploidy screening trial participants were studied from 13 centers where a 15- to 23-week genetic sonogram was performed in the same center. Midtrimester Down syndrome risks were estimated for five screening test policies: first-trimester combined, second-trimester quadruple, and testing sequentially by integrated, stepwise, or contingent protocols. The maternal age-specific risk and the screening test risk were modified using likelihood ratios derived from the ultrasound findings. Separate likelihood ratios were obtained for the presence or absence of at least one major fetal structural malformation and for each “soft” sonographic marker statistically significant at the P<.005 level. Detection and false-positive rate were calculated for the genetic sonogram alone and for each test before and after risk modification. RESULTS: A total of 7,842 pregnancies were studied, including 59 with Down syndrome. Major malformations and 8 of the 18 soft markers evaluated were highly significant. The detection rate for a 5% false-positive rate for the genetic sonogram alone was 69%; the detection rate increased from 81% to 90% with the combined test, from 81% to 90% with the quadruple test, from 93% to 98% with the integrated test, from 97% to 98% with the stepwise test, and from 95% to 97% with the contingent test. The stepwise and contingent use of the genetic sonogram after first-trimester screening both yielded a 90% detection rate. CONCLUSION: Genetic sonography can increase detection rates substantially for combined and quadruple tests and more modestly for sequential protocols. Substituting sonography for quadruple markers in sequential screening was not useful. LEVEL OF EVIDENCE: II

Collaboration


Dive into the Susan J. Gross's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fergal D. Malone

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Honor M. Wolfe

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert H. Ball

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge