Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan J. Hall is active.

Publication


Featured researches published by Susan J. Hall.


Toxicologic Pathology | 2007

Dose-Dependent Effects of Sertoli Cell Toxicants 2,5-Hexanedione, Carbendazim, and Mono-(2-ethylhexyl) phthalate in Adult Rat Testis

Jeffrey S. Moffit; Bronwyn H. Bryant; Susan J. Hall; Kim Boekelheide

Sertoli cells are the primary cellular target for a number of pharmaceutical and environmental testicular toxicants, including 2,5-hexanedione, carbendazim, and mono-(2-ethylhexyl) phthalate. Exposure to these individual compounds can result in impaired Sertoli cell function and subsequent germ cell loss. The loss of testicular function is marked by histopathological changes in seminiferous tubule diameter, seminiferous epithelial sloughing, vacuolization, spermatid head retention, germ cell apoptosis, and altered microtubule assembly. The present study investigates dose-response relationships for these classic Sertoli cell toxicants using histopathology endpoints. Understanding the relationship between the Sertoli cell toxicant dose and its histopathologic manifestations will help establish the sensitivity of these endpoints as markers of testicular injury. The results indicate that no single histopathology endpoint was sensitive on its own in identifying altered testicular morphology resulting from toxicant exposure. However, when multiple endpoints were combined dose-response relationships could be associated with incremental alterations in histopathology. The data generated from these experiments will be useful in further investigating the effects of Sertoli cell toxicant exposure in animal toxicity studies. In addition, this work is fundamental to a planned investigation of the histopathologic and gene expression changes associated with testicular toxicant co-exposures, which may occur both occupationally and environmentally.


Environmental Health Perspectives | 2012

Human fetal testis xenografts are resistant to phthalate-induced endocrine disruption.

Nicholas E. Heger; Susan J. Hall; Moses A. Sandrof; Janan B. Hensley; Erin N. McDowell; Kayla A Martin; Kevin W. Gaido; Kamin J. Johnson; Kim Boekelheide

Background: In utero exposure to endocrine-disrupting chemicals may contribute to testicular dysgenesis syndrome (TDS), a proposed constellation of increasingly common male reproductive tract abnormalities (including hypospadias, cryptorchidism, hypospermatogenesis, and testicular cancer). Male rats exposed in utero to certain phthalate plasticizers exhibit multinucleated germ cell (MNG) induction and suppressed steroidogenic gene expression and testosterone production in the fetal testis, causing TDS-consistent effects of hypospadias and cryptorchidism. Mice exposed to phthalates in utero exhibit MNG induction only. This disparity in response demonstrates a species-specific sensitivity to phthalate-induced suppression of fetal Leydig cell steroidogenesis. Importantly, ex vivo phthalate exposure of the fetal testis does not recapitulate the species-specific endocrine disruption, demonstrating the need for a new bioassay to assess the human response to phthalates. Objectives: In this study, we aimed to develop and validate a rat and mouse testis xenograft bioassay of phthalate exposure and examine the human fetal testis response. Methods: Fetal rat, mouse, and human testes were xenografted into immunodeficient rodent hosts, and hosts were gavaged with a range of phthalate doses over multiple days. Xenografts were harvested and assessed for histopathology and steroidogenic end points. Results: Consistent with the in utero response, phthalate exposure induced MNG formation in rat and mouse xenografts, but only rats exhibited suppressed steroidogenesis. Across a range of doses, human fetal testis xenografts exhibited MNG induction but were resistant to suppression of steroidogenic gene expression. Conclusions: Phthalate exposure of grafted human fetal testis altered fetal germ cells but did not reduce expression of genes that regulate fetal testosterone biosynthesis.


Molecular and Cellular Biology | 2008

The Mouse Polyubiquitin Gene Ubb Is Essential for Meiotic Progression

Kwon-Yul Ryu; Shamim A. Sinnar; Laura G. Reinholdt; Sergio Vaccari; Susan J. Hall; Manuel Garcia; Tatiana Zaitseva; Donna M. Bouley; Kim Boekelheide; Mary Ann Handel; Marco Conti; Ron R. Kopito

ABSTRACT Ubiquitin is encoded in mice by two polyubiquitin genes, Ubb and Ubc, that are considered to be stress inducible and two constitutively expressed monoubiquitin (Uba) genes. Here we report that targeted disruption of Ubb results in male and female infertility due to failure of germ cells to progress through meiosis I and hypogonadism. In the absence of Ubb, spermatocytes and oocytes arrest during meiotic prophase, before metaphase of the first meiotic division. Although cellular ubiquitin levels are believed to be maintained by a combination of functional redundancy among the four ubiquitin genes, stress inducibility of the two polyubiquitin genes, and ubiquitin recycling by proteasome-associated isopeptidases, our results indicate that ubiquitin is required for and consumed during meiotic progression. The striking similarity of the meiotic phenotype in Ubb−/− germ cells to the sporulation defect in fission yeast (Schizosaccharomyces pombe) lacking a polyubiquitin gene suggests that a meiotic role of the polyubiquitin gene has been conserved throughout eukaryotic evolution.


Environmental Health Perspectives | 2012

Rodent Thyroid, Liver, and Fetal Testis Toxicity of the Monoester Metabolite of Bis-(2-Ethylhexyl) Tetrabromophthalate (TBPH), a Novel Brominated Flame Retardant Present in Indoor Dust

Cecilia Springer; Edward Dere; Susan J. Hall; Simon C. Roberts; Craig M. Butt; Heather M. Stapleton; Deborah J. Watkins; Michael D. McClean; Thomas F. Webster; Jennifer J. Schlezinger; Kim Boekelheide

Background: Bis-(2-ethylhexyl) tetrabromophthalate (TBPH) is widely used as a replacement for polybrominated diphenyl ethers (PBDEs) in commercial flame retardant mixtures such as Firemaster 550. It is also used in a commercial mixture called DP 45. Mono-(2-ethyhexyl) tetrabromophthalate (TBMEHP) is a potentially toxic metabolite. Objectives: We used in vitro and rodent in vivo models to evaluate human exposure and the potential metabolism and toxicity of TBPH. Methods: Dust collected from homes, offices, and cars was measured for TBPH by gas chromatography followed by mass spectrometry. Pregnant rats were gavaged with TBMEHP (200 or 500 mg/kg) or corn oil on gestational days 18 and 19, and dams and fetuses were evaluated histologically for toxicity. We also assessed TBMEHP for deiodinase inhibition using rat liver microsomes and for peroxisome proliferator-activated receptor (PPAR) α and γ activation using murine FAO cells and NIH 3T3 L1 cells. Results: TBPH concentrations in dust from office buildings (median, 410 ng/g) were higher than in main living areas in homes (median, 150 ng/g). TBPH was metabolized by purified porcine esterases to TBMEHP. Two days of TBMEHP exposure in the rat produced maternal hypothyroidism with markedly decreased serum T3 (3,3´,5-triiodo-l-thyronine), maternal hepatotoxicity, and increased multinucleated germ cells (MNGs) in fetal testes without antiandrogenic effects. In vitro, TBMEHP inhibited deiodinase activity, induced adipocyte differentiation in NIH 3T3 L1 cells, and activated PPARα- and PPARγ-mediated gene transcription in NIH 3T3 L1 cells and FAO cells, respectively. Conclusions: TBPH a) is present in dust from indoor environments (implying human exposure) and b) can be metabolized by porcine esterases to TBMEHP, which c) elicited maternal thyrotoxic and hepatotoxic effects and d) induced MNGs in the fetal testes in a rat model. In mouse NIH 3T3 L1 preadipocyte cells, TBMEHP inhibited rat hepatic microsome deiodinase activity and was an agonist for PPARs in murine FAO and NIH 3T3 L1 cells.


Biology of Reproduction | 2001

Continuously Proliferative Stem Germ Cells Partially Repopulate the Aged, Atrophic Rat Testis after Gonadotropin-Releasing Hormone Agonist Therapy

Heidi A. Schoenfeld; Susan J. Hall; Kim Boekelheide

Abstract Aging in the male human is accompanied by testicular atrophy, although relatively little is known about the mechanisms underlying germ cell loss. Testicular atrophy in the aged Brown Norway rat, an animal model for studies of aging in the human, has been attributed to a loss of spermatogonial stem cells. However, examination of testicular cross-sections from 27-mo-old Brown Norway rats indicated that approximately 14% of type A spermatogonia were stem cells. Furthermore, using bromodeoxyuridine labeling, we found that approximately 47% of these stem cells were actively dividing, with a cell cycle time of approximately 12.6 days. Both serum and testicular interstitial fluid testosterone levels were depressed in the aged rat. Therapy with the GnRH agonist, leuprolide, which has been empirically shown to reverse testicular atrophy in other models of germ cell loss, also partially restored spermatogenesis in the aged Brown Norway rat. The extent of testicular atrophy varied considerably, not only within the control and leuprolide-treatment groups but also between the left and right testes of the same animals. No significant difference was found between the mean percentage of populated tubules in 31-mo-old control animals (16.2 ± 28%, mean ± SD) and 31-mo-old leuprolide-treated animals (20.9 ± 19.8%), but categorical comparisons showed that significantly fewer leuprolide-treated animals and testes contained ≤1% populated tubules, indicating that GnRH agonist therapy stimulates differentiation of type A spermatogonia. An increase in the ratio of soluble to membrane stem cell factor mRNA levels was present in aged rats and partially reversed following leuprolide therapy.


Toxicological Sciences | 2014

Differential response to abiraterone acetate and di-n-butyl phthalate in an androgen-sensitive human fetal testis xenograft bioassay.

Daniel J. Spade; Susan J. Hall; Camelia M. Saffarini; Susan M. Huse; Kim Boekelheide

In utero exposure to antiandrogenic xenobiotics such as di-n-butyl phthalate (DBP) has been linked to congenital defects of the male reproductive tract, including cryptorchidism and hypospadias, as well as later life effects such as testicular cancer and decreased sperm counts. Experimental evidence indicates that DBP has in utero antiandrogenic effects in the rat. However, it is unclear whether DBP has similar effects on androgen biosynthesis in human fetal testis. To address this issue, we developed a xenograft bioassay with multiple androgen-sensitive physiological endpoints, similar to the rodent Hershberger assay. Adult male athymic nude mice were castrated, and human fetal testis was xenografted into the renal subcapsular space. Hosts were treated with human chorionic gonadotropin for 4 weeks to stimulate testosterone production. During weeks 3 and 4, hosts were exposed to DBP or abiraterone acetate, a CYP17A1 inhibitor. Although abiraterone acetate (14 d, 75 mg/kg/d po) dramatically reduced testosterone and the weights of androgen-sensitive host organs, DBP (14 d, 500 mg/kg/d po) had no effect on androgenic endpoints. DBP did produce a near-significant trend toward increased multinucleated germ cells in the xenografts. Gene expression analysis showed that abiraterone decreased expression of genes related to transcription and cell differentiation while increasing expression of genes involved in epigenetic control of gene expression. DBP induced expression of oxidative stress response genes and altered expression of actin cytoskeleton genes.


PLOS ONE | 2012

Sperm mRNA Transcripts Are Indicators of Sub-Chronic Low Dose Testicular Injury in the Fischer 344 Rat

Sara E. Pacheco; Linnea M. Anderson; Moses A. Sandrof; Marguerite M. Vantangoli; Susan J. Hall; Kim Boekelheide

Current human reproductive risk assessment methods rely on semen and serum hormone analyses, which are not easily comparable to the histopathological endpoints and mating studies used in animal testing. Because of these limitations, there is a need to develop universal evaluations that reliably reflect male reproductive function. We hypothesized that toxicant-induced testicular injury can be detected in sperm using mRNA transcripts as indicators of insult. To test this, we exposed adult male Fischer 344 rats to low doses of model testicular toxicants and classically characterized the testicular injury while simultaneously evaluating sperm mRNA transcripts from the same animals. Overall, this study aimed to: 1) identify sperm transcripts altered after exposure to the model testicular toxicant, 2,5-hexanedione (HD) using microarrays; 2) expand on the HD-induced transcript changes in a comprehensive time course experiment using qRT-PCR arrays; and 3) test these injury indicators after exposure to another model testicular toxicant, carbendazim (CBZ). Microarray analysis of HD-treated adult Fischer 344 rats identified 128 altered sperm mRNA transcripts when compared to control using linear models of microarray analysis (q<0.05). All transcript alterations disappeared after 3 months of post-exposure recovery. In the time course experiment, time-dependent alterations were observed for 12 candidate transcripts selected from the microarray data based upon fold change and biological relevance, and 8 of these transcripts remained significantly altered after the 3-month recovery period (p<0.05). In the last experiment, 8 candidate transcripts changed after exposure to CBZ (p<0.05). The two testicular toxicants produced distinct molecular signatures with only 4 overlapping transcripts between them, each occurring in opposite directions. Overall, these results suggest that sperm mRNA transcripts are indicators of low dose toxicant-induced testicular injury in the rat.


Toxicology and Applied Pharmacology | 1992

Sertoli cells isolated from adult 2,5-hexanedione-exposed rats exhibit atypical morphology and actin distribution

Eric S. Hall; Susan J. Hall; Kim Boekelheide

Sertoli cells were isolated from 2,5-hexanedione (2,5-HD)-exposed, cryptorchid and 21-day-old rats in order to examine alterations in in vitro Sertoli cell transferrin secretion, germ cell adhesion, in vitro morphology, and cytoskeletal organization which might be involved in the irreversibility of 2,5-HD-induced testicular injury. Sertoli cells isolated from 21-day-old, cryptorchid and 2,5-HD-exposed rats exhibited similar transferrin secretion as measured using an enzyme-linked immunosorbent assay. Germ-cell adhesion was measured using [3H]leucine-labeled immature rat germ cells and revealed similar levels of germ-cell binding in Sertoli cell cultures isolated from the three groups of rats. Differential interference contrast microscopy demonstrated that Sertoli cells isolated from 2,5-HD-exposed rats possessed an atypical spindle shape and long cytoplasmic processes. The immunofluorescent distribution of tubulin and vimentin corresponded with the morphological appearance of the cells with well-defined microtubule and intermediate filament networks which, in the cells isolated from 2,5-HD-exposed rats, extended into the cytoplasmic processes. Rhodamine-conjugated phalloidin-labeled actin stress fibers were decreased in density within the 2,5-HD-exposed rat Sertoli cells. The altered morphology and distribution of actin filaments within Sertoli cells isolated from adult 2,5-HD-exposed rats may reflect an underlying insult which is involved in the irreversible nature of 2,5-HD intoxication.


Journal of Andrology | 2012

Induction and Persistence of Abnormal Testicular Germ Cells Following Gestational Exposure to Di‐(n‐Butyl) Phthalate in p53‐Null Mice

Camelia M. Saffarini; Nicholas E. Heger; Hideki Yamasaki; Tao Liu; Susan J. Hall; Kim Boekelheide

Phthalate esters are commonly used plasticizers found in many household items, personal care products, and medical devices. Animal studies have shown that in utero exposure to di-(n-butyl) phthalate (DBP) within a critical window during gestation causes male reproductive tract abnormalities resembling testicular dysgenesis syndrome. Our studies utilized p53-deficient mice for their ability to display greater resistance to apoptosis during development. This model was chosen to determine whether multinucleated germ cells (MNG) induced by gestational DBP exposure could survive postnatally and evolve into testicular germ cell cancer. Pregnant dams were exposed to DBP (500 mg/kg/day) by oral gavage from gestational day 12 until birth. Perinatal effects were assessed on gestational day 19 and postnatal days 1, 4, 7, and 10 for the number of MNGs present in control and DBP-treated p53-heterozygous and null animals. As expected, DBP exposure induced MNGs, with greater numbers found in p53-null mice. Additionally, there was a time-dependent decrease in the incidence of MNGs during the early postnatal period. Histologic examination of adult mice exposed in utero to DBP revealed persistence of abnormal germ cells only in DBP-treated p53-null mice, not in p53-heterozygous or wild-type mice. Immunohistochemical staining of perinatal MNGs and adult abnormal germ cells was negative for both octamer-binding protein 3/4 and placental alkaline phosphatase. This unique model identified a role for p53 in the perinatal apoptosis of DBP-induced MNGs and provided insight into the long-term effects of gestational DBP exposure within a p53-null environment.


Pediatric Pulmonology | 2012

The human fetal lung xenograft: validation as model of microvascular remodeling in the postglandular lung.

Monique E. De Paepe; Sharon Chu; Susan J. Hall; Nicholas E. Heger; Chris Thanos; Quanfu Mao

Coordinated remodeling of epithelium and vasculature is essential for normal postglandular lung development. The value of the human‐to‐rodent lung xenograft as model of fetal microvascular development remains poorly defined.

Collaboration


Dive into the Susan J. Hall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrica Bianchi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge