Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan J. Wilson is active.

Publication


Featured researches published by Susan J. Wilson.


The Journal of Allergy and Clinical Immunology | 2000

Epithelial-mesenchymal interactions in the pathogenesis of asthma.

Stephen T. Holgate; Donna E. Davies; Peter M. Lackie; Susan J. Wilson; Sarah M. Puddicombe; James L. Lordan

Abstract During lung development, repair, and inflammation, local production of cytokines (eg, transforming growth factor-β) and growth factors (eg, epidermal growth factor) by epithelial and mesenchymal cells mediate bidirectional growth control effectively creating an epithelial-mesenchymal trophic unit. In asthma the bronchial epithelium is highly abnormal, with structural changes involving separation of columnar cells from their basal attachments and functional changes including increased expression and release of proinflammatory cytokines, growth factors, and mediator-generating enzymes. Beneath this damaged structure there is an increase in the number of subepithelial myofibroblasts that deposit interstitial collagens causing thickening and increased density of the subepithelial basement membrane. Our recent studies suggest that the extent of epithelial damage in asthma may be the result of impaired epidermal growth factor receptor–mediated repair. In view of the close spatial relationship between the damaged epithelium and the underlying myofibroblasts, we propose that impaired epithelial repair cooperates with the TH2 environment to shift the set point for communication within the trophic unit. This leads to myofibroblast activation, excessive matrix deposition, and production of mediators that propagate and amplify the remodeling responses throughout the airway wall. (J Allergy Clin Immunol 2000;105:193-204.)


Thorax | 2005

Tumour necrosis factor (TNFα) as a novel therapeutic target in symptomatic corticosteroid dependent asthma

Peter H. Howarth; K. S. Babu; Hasan Arshad; Laurie C. Lau; M Buckley; W McConnell; P Beckett; M Al Ali; A Chauhan; Susan J. Wilson; A Reynolds; Donna E. Davies; Stephen T. Holgate

Background: Tumour necrosis factor α (TNFα) is a major therapeutic target in a range of chronic inflammatory disorders characterised by a Th1 type immune response in which TNFα is generated in excess. By contrast, asthma is regarded as a Th2 type disorder, especially when associated with atopy. However, as asthma becomes more severe and chronic, it adopts additional characteristics including corticosteroid refractoriness and involvement of neutrophils suggestive of an altered inflammatory profile towards a Th1 type response, incriminating cytokines such as TNFα. Methods: TNFα levels in bronchoalveolar lavage (BAL) fluid of 26 healthy controls, 42 subjects with mild asthma and 20 with severe asthma were measured by immunoassay, and TNFα gene expression was determined in endobronchial biopsy specimens from 14 patients with mild asthma and 14 with severe asthma. The cellular localisation of TNFα was assessed by immunohistochemistry. An open label uncontrolled clinical study was then undertaken in 17 subjects with severe asthma to evaluate the effect of 12 weeks of treatment with the soluble TNFα receptor-IgG1Fc fusion protein, etanercept. Results: TNFα levels in BAL fluid, TNFα gene expression and TNFα immunoreative cells were increased in subjects with severe corticosteroid dependent asthma. Etanercept treatment was associated with improvement in asthma symptoms, lung function, and bronchial hyperresponsiveness. Conclusions: These findings may be of clinical significance in identifying TNFα as a new therapeutic target in subjects with severe asthma. The effects of anti-TNF treatment now require confirmation in placebo controlled studies.


The New England Journal of Medicine | 2011

Effect of Bronchoconstriction on Airway Remodeling in Asthma

Christopher Grainge; Laurie C.K. Lau; Jonathon A. Ward; Valdeep Dulay; Gemma Lahiff; Susan J. Wilson; Stephen T. Holgate; Donna E. Davies; Peter H. Howarth

BACKGROUND Asthma is characterized pathologically by structural changes in the airway, termed airway remodeling. These changes are associated with worse long-term clinical outcomes and have been attributed to eosinophilic inflammation. In vitro studies indicate, however, that the compressive mechanical forces that arise during bronchoconstriction may induce remodeling independently of inflammation. We evaluated the influence of repeated experimentally induced bronchoconstriction on airway structural changes in patients with asthma. METHODS We randomly assigned 48 subjects with asthma to one of four inhalation challenge protocols involving a series of three challenges with one type of inhaled agent presented at 48-hour intervals. The two active challenges were with either a dust-mite allergen (which causes bronchoconstriction and eosinophilic inflammation) or methacholine (which causes bronchoconstriction without eosinophilic inflammation); the two control challenges (neither of which causes bronchoconstriction) were either saline alone or albuterol followed by methacholine (to control for nonbronchoconstrictor effects of methacholine). Bronchial-biopsy specimens were obtained before and 4 days after completion of the challenges. RESULTS Allergen and methacholine immediately induced similar levels of bronchoconstriction. Eosinophilic inflammation of the airways increased only in the allergen group, whereas both the allergen and the methacholine groups had significant airway remodeling not seen in the two control groups. Subepithelial collagen-band thickness increased by a median of 2.17 μm in the allergen group (interquartile range [IQR], 0.70 to 3.67) and 1.94 μm in the methacholine group (IQR, 0.37 to 3.24) (P<0.001 for the comparison of the two challenge groups with the two control groups); periodic acid-Schiff staining of epithelium (mucus glands) also increased, by a median of 2.17 percentage points in the allergen group (IQR, 1.03 to 4.77) and 2.13 percentage points in the methacholine group (IQR, 1.14 to 7.96) (P=0.003 for the comparison with controls). There were no significant differences between the allergen and methacholine groups. CONCLUSIONS Bronchoconstriction without additional inflammation induces airway remodeling in patients with asthma. These findings have potential implications for management.


Thorax | 2004

Relationship between peripheral airway dysfunction, airway obstruction, and neutrophilic inflammation in COPD

Rory A. O'Donnell; C.R. Peebles; Jon Ward; A. Daraker; Gilbert Angco; P. Broberg; Stefan Pierrou; J. Lund; Stephen T. Holgate; Donna E. Davies; D.J. Delany; Susan J. Wilson; Ratko Djukanovic

Background: Considerable research has been conducted into the nature of airway inflammation in chronic obstructive pulmonary disease (COPD) but the relationship between proximal airways inflammation and both dynamic collapse of the peripheral airways and HRCT determined emphysema severity remains unknown. A number of research tools have been combined to study smokers with a range of COPD severities classified according to the GOLD criteria. Methods: Sixty five subjects (11 healthy smokers, 44 smokers with stage 0–IV COPD, and 10 healthy non-smokers) were assessed using lung function testing and HRCT scanning to quantify emphysema and peripheral airway dysfunction and sputum induction to measure airway inflammation. Results: Expiratory HRCT measurements and the expiratory/inspiratory mean lung density ratio (both indicators of peripheral airway dysfunction) correlated more closely in smokers with the severity of airflow obstruction (r = −0.64, p<0.001) than did inspiratory HRCT measurements (which reflect emphysema severity; r = −0.45, p<0.01). Raised sputum neutrophil counts also correlated strongly in smokers with HRCT indicators of peripheral airway dysfunction (r = 0.55, p<0.001) but did not correlate with HRCT indicators of the severity of emphysema. Conclusions: This study suggests that peripheral airway dysfunction, assessed by expiratory HRCT measurements, is a determinant of COPD severity. Airway neutrophilia, a central feature of COPD, is closely associated with the severity of peripheral airway dysfunction in COPD but is not related to the overall severity of emphysema as measured by HRCT.


Thorax | 2006

Inflammatory cells in the airways in COPD

Rory A. O'Donnell; D Breen; Susan J. Wilson; Ratko Djukanovic

Airway inflammation is central to the pathogenesis of both airway remodelling and parenchymal destruction in chronic obstructive pulmonary disease (COPD). Neutrophils, macrophages, and CD8+ T lymphocytes have been implicated in a number of studies, but a detailed profile of disease-phenotype specific inflammation has yet to emerge. The heterogeneity of the disease has hindered data interpretation while extrapolation of the results of relatively non-invasive studies to the actual pathology found in the distal lung is difficult. Moreover, prominent studies have had frequently conflicting results. Further investigations are needed to marry the different clinical phenotypes of COPD to their respective inflammatory profiles in the airways and thus improve our understanding of the pathogenesis of the disease as a whole.


European Respiratory Journal | 2006

Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans.

Annelie F. Behndig; Ian Mudway; Joanna L Brown; Nikolai Stenfors; Ragnberth Helleday; Sean T Duggan; Susan J. Wilson; Christoffer Boman; Flemming R. Cassee; Anthony J. Frew; Frank J. Kelly; Thomas Sandström; Anders Blomberg

Pulmonary cells exposed to diesel exhaust (DE) particles in vitro respond in a hierarchical fashion with protective antioxidant responses predominating at low doses and inflammation and injury only occurring at higher concentrations. In the present study, the authors examined whether similar responses occurred in vivo, specifically whether antioxidants were upregulated following a low-dose DE challenge and investigated how these responses related to the development of airway inflammation at different levels of the respiratory tract where particle dose varies markedly. A total of 15 volunteers were exposed to DE (100 µg·m−3 airborne particulate matter with a diameter of <10 µm for 2 h) and air in a double-blinded, randomised fashion. At 18 h post-exposure, bronchoscopy was performed with lavage and mucosal biopsies taken to assess airway redox and inflammatory status. Following DE exposure, the current authors observed an increase in bronchial mucosa neutrophil and mast cell numbers, as well as increased neutrophil numbers, interleukin-8 and myeloperoxidase concentrations in bronchial lavage. No inflammatory responses were seen in the alveolar compartment, but both reduced glutathione and urate concentrations were increased following diesel exposure. In conclusion, the lung inflammatory response to diesel exhaust is compartmentalised, related to differing antioxidant responses in the conducting airway and alveolar regions.


Journal of Immunology | 2002

Cooperative Effects of Th2 Cytokines and Allergen on Normal and Asthmatic Bronchial Epithelial Cells

James L. Lordan; F. Bucchieri; Audrey Richter; Athanassias Konstantinidis; John W. Holloway; Matthew Thornber; Sarah M. Puddicombe; Diana Buchanan; Susan J. Wilson; Ratko Djukanovic; Stephen T. Holgate; Donna E. Davies

In sensitized individuals, exposure to allergens such as Dermatophagoides pteronyssinus (Der p) causes Th2 polarization and release of cytokines, including IL-4 and IL-13. Because Der p extracts also have direct effects on epithelial cells, we hypothesized that allergen augments the effects of Th2 cytokines by promoting mediator release from the bronchial epithelium in allergic asthma. To test our hypothesis, primary bronchial epithelial cultures were grown from bronchial brushings of normal and atopic asthmatic subjects. RT-PCR showed that each culture expressed IL-4Rα, common γ-chain, and IL-13Rα1, as well as IL-13Rα2, which negatively regulates IL-13 signaling; FACS analysis confirmed IL-13Rα2 protein expression. Exposure of epithelial cultures to either Der p extracts, TNF-α, IL-4, or IL-13 enhanced GM-CSF and IL-8 release, and this was partially suppressible by corticosteroids. Simultaneous exposure of the epithelial cultures to IL-4 or IL-13 together with Der p resulted in a further increase in cytokine release, which was at least additive. Release of TGF-α was also increased by TNF-α and combinations of IL-4, IL-13, and Der p; however, this stimulation was only significant in the asthma-derived cultures. These data suggest that, in an allergic environment, Th2 cytokines and allergen have the potential to sustain airway inflammation through a cooperative effect on cytokine release by the bronchial epithelium. Our novel finding that IL-4, IL-13, and allergen enhance release of TGF-α, a ligand for the epidermal growth factor receptor that stimulates fibroblast proliferation and goblet cell differentiation, provides a potential link between allergen exposure, Th2 cytokines, and airway remodelling in asthma.


Thorax | 2005

Epithelial stress and structural remodelling in childhood asthma

I A Fedorov; Susan J. Wilson; Donna E. Davies; Stephen T. Holgate

Background: In adult asthma the bronchial epithelium shows high expression of the epidermal growth factor receptor (EGFR) and the cyclin dependent kinase inhibitor, p21waf, linked to ongoing stress and injury. Methods: To determine if these are early markers of disease, sections of bronchial specimens obtained post mortem or by bronchoscopy from non-asthmatic (n = 7), moderate (n = 7), or severe (n = 9) asthmatic children aged 5–15 years were examined immunohistochemically. All severe and one moderately asthmatic children were receiving inhaled corticosteroids. Results: The lamina reticularis of the asthmatic biopsy sections was found to be thicker (p = 0.01) than normal with increased deposition of collagen III (p = 0.007); submucosal eosinophil numbers did not differ between groups. As in adults, there was an asthma-related increase in epithelial EGFR (p<0.002) but there was no evidence of proliferation, with Ki67 being reduced (p = 0.001) and p21waf increased (p<0.004). The thickness of the lamina reticularis was significantly correlated with epithelial EGFR (rho = 0.77, p<0.001). Conclusions: These data provide evidence that, in asthmatic children, the epithelium is stressed or injured without significant eosinophilic inflammation. This change in the epithelial phenotype is associated with collagen deposition in the lamina reticularis, suggesting that the epithelial mesenchymal trophic unit is active early in, and may contribute to, the pathogenesis of asthma.


Clinical & Experimental Allergy | 2003

The role of the epidermal growth factor receptor in sustaining neutrophil inflammation in severe asthma

L. M. Hamilton; C. Torres-Lozano; Sarah M. Puddicombe; A. Richter; Ian Kimber; Rebecca J. Dearman; B. Vrugt; René Aalbers; Stephen T. Holgate; Ratko Djukanovic; Susan J. Wilson; Donna E. Davies

Background The extent of epithelial injury in asthma is reflected by expression of the epidermal growth factor receptor (EGFR), which is increased in proportion to disease severity and is corticosteroid refractory. Although the EGFR is involved in epithelial growth and differentiation, it is unknown whether it also contributes to the inflammatory response in asthma.


Journal of Immunology | 2002

NF-κB and TNF-α: A Positive Autocrine Loop in Human Lung Mast Cells?

William R. Coward; Yoshimichi Okayama; Hironori Sagara; Susan J. Wilson; Stephen T. Holgate; Martin K. Church

The generation of cytokines, particularly TNF-α, by mast cells is crucial for the initiation of the allergic response. A key transcription factor involved in the synthesis of TNF-α is NF-κB. Using a mAb specific for the activated form of NF-κB, immunocytochemistry, confocal microscopy, and gel shift assays have been used in conjunction to localize this transcription factor to human lung mast cells and to study its activation. Activation of mast cells with stem cell factor (10 ng/ml) and anti-IgE (1 μg/ml) induced maximal activation of NF-κB at 4 and 2 h, respectively. In contrast, with TNF-α (5 ng/ml) maximal activation occurred within 15 min. Parallel falls in IκB were demonstrated. Confocal microscopy demonstrated the localization of the activated form of NF-κB to the nuclei of activated mast cells. NF-κB activation was verified using a gel shift assay. A supershift assay showed mast cell NF-κB to be composed primarily of p50 with smaller amounts of p65. No interaction with Abs for Rel-A, c-Rel, Rel-B, and p52 was seen. Immunocytochemistry and ELISAs showed TNF-α to be stored within mast cells and released into the extracellular environment following activation. The possible participation of TNF-α generated by mast cells in NF-κB activation by anti-IgE was investigated using a blocking Ab for TNF-α. The blocking Ab reduced NF-κB activation by anti-IgE by >50%, suggesting that the release of preformed mast cell-associated TNF-α acts as a positive autocrine feedback signal to augment NF-κB activation and production of further cytokine, including GM-CSF and IL-8.

Collaboration


Dive into the Susan J. Wilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna E. Davies

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah M. Puddicombe

Southampton General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony J. Frew

Royal Sussex County Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge