Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan Joiner is active.

Publication


Featured researches published by Susan Joiner.


Nature | 1997

The same prion strain causes vCJD and BSE

Andrew F. Hill; Melanie Desbruslais; Susan Joiner; Katie Sidle; Ian Gowland; John Collinge; Lawrence J. Doey; Peter L. Lantos

Epidemiological and clinicopathological studies, allied with pathological prion protein (PrPSc) analysis, strongly support the hypothesis that the human prion disease new variant Creutzfeldt-Jakob disease (vCJD) is causally related to bovine spongiform encephalopathy (BSE),, but considerable controversy remains. Distinct prion strains are distinguished by their biological properties on transmission to laboratory animals and by physical and chemical differences in PrPSc strains. We now find that the biological and molecular transmission characteristics of vCJD are consistent with it being the human counterpart of BSE.


The Lancet | 1999

Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples

Andrew F. Hill; Rj Butterworth; Susan Joiner; Graham Stuart Jackson; Dafydd Thomas; Adam Frosh; N Tolley; Je Bell; M Spencer; Andrew J. King; S Al-Sarraj; James Ironside; Peter L. Lantos; John Collinge

BACKGROUND Prion diseases are associated with the accumulation of an abnormal isoform of cellular prion protein (PrPSc), which is the principal constituent of prions. Prions replicate in lymphoreticular tissues before neuroinvasion, suggesting that lymphoreticular biopsy samples may allow early diagnosis by detection of PrPSc. Variant Creutzfeldt-Jakob disease (variant CJD) is difficult to distinguish from common psychiatric disorders in its early stages and definitive diagnosis has relied on neuropathology. We studied lymphoreticular tissues from a necropsy series and assessed tonsillar biopsy samples as a diagnostic investigation for human prion disease. METHODS Lymphoreticular tissues (68 tonsils, 64 spleens, and 40 lymph nodes) were obtained at necropsy from patients affected by prion disease and from neurological and normal controls. Tonsil biopsy sampling was done on 20 patients with suspected prion disease. Tissues were analysed by western blot to detect and type PrPSc, by PrP immunohistochemistry, or both. FINDINGS All lymphoreticular tissues obtained at necropsy from patients with neuropathologically confirmed variant CJD, but not from patients with other prion diseases or controls, were positive for PrPSc. In addition, PrPSc typing revealed a consistent pattern (designated type 4t) different from that seen in variant CJD brain (type 4) or in brain from other CJD subtypes (types 1-3). Tonsil biopsy tissue was positive in all eight patients with an adequate biopsy sample and whose subsequent course has confirmed, or is highly consistent with, a diagnosis of variant CJD and negative in all patients subsequently confirmed to have other diagnoses. INTERPRETATION We found that if, in the appropriate clinical context, a tonsil biopsy sample was positive for PrPSc, variant CJD could be diagnosed, which obviates the need for a brain biopsy sample to be taken. Our results also show that variant CJD has a different pathogenesis to sporadic CJD.


The Lancet | 2001

Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay

Jane Wadsworth; Susan Joiner; Andrew F. Hill; Tracy Campbell; Melanie Desbruslais; Philip J. Luthert; John Collinge

BACKGROUND Variant Creutzfeldt-Jakob disease (vCJD) has a pathogenesis distinct from other forms of human prion disease: disease-related prion protein (PrP(Sc)) is readily detectable in lymphoreticular tissues. Quantitation of risk of secondary transmission, and targeting of risk reduction strategies, is limited by lack of knowledge about relative prion titres in these and other peripheral tissues, the unknown prevalence of preclinical vCJD, and a transmission barrier which limits the sensitivity of bioassay. We aimed to improve immunoblotting methods for high sensitivity detection of PrP(Sc) to investigate the distribution of PrP(Sc) in a range of vCJD tissues. METHODS We obtained tissues at necropsy from four patients with neuropathologically confirmed vCJD and from individuals without neurological disease. Tissues were analysed by sodium phosphotungstic acid precipitation of PrP(Sc) and western blotting using high sensitivity enhanced chemiluminescence. FINDINGS We could reliably detect PrP(Sc) in the equivalent of 50 nL 10% vCJD brain homogenate, with a maximum limit of detection equivalent to 5 nl. PrP(Sc) could be detected in tissue homogenates when present at concentrations 10(4)-10(5) fold lower than those reported in brain. Tonsil, spleen, and lymph node were uniformly positive for PrP(Sc) at concentrations in the range of 0.1-15% of those found in brain: the highest concentrations were consistently seen in tonsil. PrP(Sc) was readily detected in the retina and proximal optic nerve of vCJD eye at levels of 2.5 and 25%, respectively of those found in brain. Other peripheral tissues studied were negative for PrP(Sc) with the exception of low concentrations in rectum, adrenal gland, and thymus from a single patient with vCJD. vCJD appendix and blood (Buffy coat fraction) were negative for PrP(Sc) at this level of assay sensitivity. INTERPRETATION We have developed a highly sensitive immunoblot method for detection of PrP(Sc) in vCJD tissues that can be used to provide an upper limit on PrP(Sc) concentrations in peripheral tissues, including blood, to inform risk assessment models. Rectal and other gastrointestinal tissues should be further investigated to assess risk of iatrogenic transmission via biopsy instruments. Ophthalmic surgical instruments used in procedures involving optic nerve and the posterior segment of the eye, in particular the retina, might represent a potential risk for iatrogenic transmission of vCJD. Tonsil is the tissue of choice for diagnostic biopsy and for population screening of surgical tissues to assess prevalence of preclinical vCJD infection within the UK and other populations.


The Lancet | 2006

Clinical presentation and pre-mortem diagnosis of variant Creutzfeldt-Jakob disease associated with blood transfusion: a case report

Stephen J. Wroe; Suvankar Pal; D Siddique; Harpreet Hyare; Rebecca Macfarlane; Susan Joiner; Jacqueline M. Linehan; Sebastian Brandner; Jonathan D. F. Wadsworth; Patricia Hewitt; John Collinge

BACKGROUND Concerns have been raised that variant Creutzfeldt-Jakob disease (vCJD) might be transmissible by blood transfusion. Two cases of prion infection in a group of known recipients of transfusion from donors who subsequently developed vCJD were identified post-mortem and reported in 2004. Another patient from this at-risk group developed neurological signs and was referred to the National Prion Clinic. METHODS The patient was admitted for investigation and details of blood transfusion history were obtained from the National Blood Service and Health Protection Agency; after diagnosis of vCJD, the patient was enrolled into the MRC PRION-1 trial. When the patient died, brain and tonsil tissue were obtained at autopsy and assessed for the presence of disease-related PrP by immunoblotting and immunohistochemistry. FINDINGS A clinical diagnosis of probable vCJD was made; tonsil biopsy was not done. The patient received experimental therapy with quinacrine, but deteriorated and died after a clinical course typical of vCJD. Autopsy confirmed the diagnosis and showed prion infection of the tonsils. INTERPRETATION This case of transfusion-associated vCJD infection, identified ante-mortem, is the third instance from a group of 23 known recipients who survived at least 5 years after receiving a transfusion from donors who subsequently developed vCJD. The risk to the remaining recipients of such transfusions is probably high, and these patients should be offered specialist follow-up and investigation. Tonsil biopsy will allow early and pre-symptomatic diagnosis in other iatrogenically exposed individuals at high risk, as in those with primary infection with bovine spongiform encephalopathy prions.


The EMBO Journal | 2002

BSE prions propagate as either variant CJD‐like or sporadic CJD‐like prion strains in transgenic mice expressing human prion protein

Emmanuel A. Asante; Jacqueline M. Linehan; Melanie Desbruslais; Susan Joiner; Ian Gowland; Andrew L. Wood; Julie Welch; Andrew F. Hill; Sarah E. Lloyd; Jonathan D. F. Wadsworth; John Collinge

Variant Creutzfeldt–Jakob disease (vCJD) has been recognized to date only in individuals homozygous for methionine at PRNP codon 129. Here we show that transgenic mice expressing human PrP methionine 129, inoculated with either bovine spongiform encephalopathy (BSE) or variant CJD prions, may develop the neuropathological and molecular phenotype of vCJD, consistent with these diseases being caused by the same prion strain. Surprisingly, however, BSE transmission to these transgenic mice, in addition to producing a vCJD‐like phenotype, can also result in a distinct molecular phenotype that is indistinguishable from that of sporadic CJD with PrPSc type 2. These data suggest that more than one BSE‐derived prion strain might infect humans; it is therefore possible that some patients with a phenotype consistent with sporadic CJD may have a disease arising from BSE exposure.


Nature Cell Biology | 1999

Strain-specific prion-protein conformation determined by metal ions

Jonathan D. F. Wadsworth; Andrew F. Hill; Susan Joiner; Graham Stuart Jackson; Anthony R. Clarke; John Collinge

In animals infected with a transmissible spongiform encephalopathy, or prion disease, conformational isomers (known as PrPSc proteins) of the wild-type, host-encoded cellular prion protein (PrPC) accumulate. The infectious agents, prions, are composed mainly of these conformational isomers, with distinct prion isolates or strains being associated with different PrPSc conformations and patterns of glycosylation. Here we show that two different human PrPSc types, seen in clinically distinct subtypes of classical Creutzfeldt–Jakob disease, can be interconverted in vitro by altering their metal-ion occupancy. The dependence of PrPSc conformation on the binding of copper and zinc represents a new mechanism for post-translational modification of PrP and for the generation of multiple prion strains, with widespread implications for both the molecular classification and the pathogenesis of prion diseases in humans and animals.


Science | 2004

Human Prion Protein with Valine 129 Prevents Expression of Variant CJD Phenotype

Jonathan D. F. Wadsworth; Emmanuel A. Asante; Melanie Desbruslais; Jacqueline M. Linehan; Susan Joiner; Ian Gowland; Julie Welch; Lisa Stone; Sarah E. Lloyd; Andrew F. Hill; Sebastian Brandner; John Collinge

Variant Creutzfeldt-Jakob disease (vCJD) is a unique and highly distinctive clinicopathological and molecular phenotype of human prion disease associated with infection with bovine spongiform encephalopathy (BSE)–like prions. Here, we found that generation of this phenotype in transgenic mice required expression of human prion protein (PrP) with methionine 129. Expression of human PrP with valine 129 resulted in a distinct phenotype and, remarkably, persistence of a barrier to transmission of BSE-derived prions on subpassage. Polymorphic residue 129 of human PrP dictated propagation of distinct prion strains after BSE prion infection. Thus, primary and secondary human infection with BSE-derived prions may result in sporadic CJD-like or novel phenotypes in addition to vCJD, depending on the genotype of the prion source and the recipient.


Neuroscience Letters | 1998

Molecular screening of sheep for bovine spongiform encephalopathy

Andrew F. Hill; Katie Sidle; Susan Joiner; Paula Keyes; Trevor Martin; Michael Dawson; John Collinge

Bovine spongiform encephalopathy (BSE) may have transmitted to sheep through feed and pose a risk to human health. Sheep BSE cannot be clinically distinguished from scrapie, and conventional strain typing would be impractical on a significant scale. As human prion strains can be distinguished by differences in prion protein (PrPsc) conformation and glycosylation we have applied PrP(Sc) typing to sheep. We found multiple Western blot patterns of PrP(Sc) in scrapie, consistent with the known scrapie strain diversity in sheep. Sheep passaged BSE showed a PrP(Sc) banding pattern similar to BSE passaged in other species [Collinge, J., Sidle, K.C.L., Meads, J., Ironside, J. and Hill, A.F., Nature, 383 (1996) 685-690], both in terms of fragment size following proteinase K cleavage and abundance of diglycosylated PrP. However, none of the historical or contemporary scrapie cases studied had a PrP(Sc) type identical to sheep BSE. While more extensive studies, including sheep of all PrP genotypes, will be required to fully evaluate these findings, these results suggest that large scale screening of sheep for BSE may be possible.


Brain | 2008

Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series

T Webb; Mark Poulter; Jon Beck; James Uphill; Gary Adamson; Tracy Campbell; Jacqueline M. Linehan; Caroline Powell; Sebastian Brandner; S Pal; D Siddique; Jonathan D. F. Wadsworth; Susan Joiner; K. Alner; C. Petersen; S. Hampson; C. Rhymes; Colm Treacy; Elsdon Storey; Michael D. Geschwind; Andrea H. Németh; Stephen J. Wroe; John Collinge; Simon Mead

The largest kindred with inherited prion disease P102L, historically Gerstmann-Sträussler-Scheinker syndrome, originates from central England, with émigrés now resident in various parts of the English-speaking world. We have collected data from 84 patients in the large UK kindred and numerous small unrelated pedigrees to investigate phenotypic heterogeneity and modifying factors. This collection represents by far the largest series of P102L patients so far reported. Microsatellite and genealogical analyses of eight separate European kindreds support multiple distinct mutational events at a cytosine-phosphate diester-guanidine dinucleotide mutation hot spot. All of the smaller P102L kindreds were linked to polymorphic human prion protein gene codon 129M and were not connected by genealogy or microsatellite haplotype background to the large kindred or each other. While many present with classical Gerstmann-Sträussler-Scheinker syndrome, a slowly progressive cerebellar ataxia with later onset cognitive impairment, there is remarkable heterogeneity. A subset of patients present with prominent cognitive and psychiatric features and some have met diagnostic criteria for sporadic Creutzfeldt-Jakob disease. We show that polymorphic human prion protein gene codon 129 modifies age at onset: the earliest eight clinical onsets were all MM homozygotes and overall age at onset was 7 years earlier for MM compared with MV heterozygotes (P = 0.02). Unexpectedly, apolipoprotein E4 carriers have a delayed age of onset by 10 years (P = 0.02). We found a preponderance of female patients compared with males (54 females versus 30 males, P = 0.01), which probably relates to ascertainment bias. However, these modifiers had no impact on a semi-quantitative pathological phenotype in 10 autopsied patients. These data allow an appreciation of the range of clinical phenotype, modern imaging and molecular investigation and should inform genetic counselling of at-risk individuals, with the identification of two genetic modifiers.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Kuru prions and sporadic Creutzfeldt–Jakob disease prions have equivalent transmission properties in transgenic and wild-type mice

Jonathan D. F. Wadsworth; Susan Joiner; Jacqueline M. Linehan; Melanie Desbruslais; Katie Fox; Sharon Cooper; Sabrina Cronier; Emmanuel A. Asante; Simon Mead; Sebastian Brandner; Andrew F. Hill; John Collinge

Kuru provides our principal experience of an epidemic human prion disease and primarily affected the Fore linguistic group of the Eastern Highlands of Papua New Guinea. Kuru was transmitted by the practice of consuming dead relatives as a mark of respect and mourning (transumption). To date, detailed information of the prion strain type propagated in kuru has been lacking. Here, we directly compare the transmission properties of kuru prions with sporadic, iatrogenic, and variant Creutzfeldt–Jakob disease (CJD) prions in Prnp-null transgenic mice expressing human prion protein and in wild-type mice. Molecular and neuropathological data from these transmissions show that kuru prions are distinct from variant CJD and have transmission properties equivalent to those of classical (sporadic) CJD prions. These findings are consistent with the hypothesis that kuru originated from chance consumption of an individual with sporadic CJD.

Collaboration


Dive into the Susan Joiner's collaboration.

Top Co-Authors

Avatar

John Collinge

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Mead

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Tracy Campbell

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Caroline Powell

UCL Institute of Neurology

View shared research outputs
Researchain Logo
Decentralizing Knowledge