Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan K. Pierce is active.

Publication


Featured researches published by Susan K. Pierce.


Nature | 2010

Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma.

R. Eric Davis; Vu N. Ngo; Georg Lenz; Pavel Tolar; Ryan M. Young; Paul B. Romesser; Holger Kohlhammer; Laurence Lamy; Hong Zhao; Yandan Yang; Weihong Xu; Arthur L. Shaffer; George E. Wright; Wenming Xiao; John Powell; Jian Kang Jiang; Craig J. Thomas; Andreas Rosenwald; German Ott; Hans Konrad Müller-Hermelink; Randy D. Gascoyne; Joseph M. Connors; Nathalie A. Johnson; Lisa M. Rimsza; Elias Campo; Elaine S. Jaffe; Wyndham H. Wilson; Jan Delabie; Erlend B. Smeland; Richard I. Fisher

A role for B-cell-receptor (BCR) signalling in lymphomagenesis has been inferred by studying immunoglobulin genes in human lymphomas and by engineering mouse models, but genetic and functional evidence for its oncogenic role in human lymphomas is needed. Here we describe a form of ‘chronic active’ BCR signalling that is required for cell survival in the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). The signalling adaptor CARD11 is required for constitutive NF-κB pathway activity and survival in ABC DLBCL. Roughly 10% of ABC DLBCLs have mutant CARD11 isoforms that activate NF-κB, but the mechanism that engages wild-type CARD11 in other ABC DLBCLs was unknown. An RNA interference genetic screen revealed that a BCR signalling component, Bruton’s tyrosine kinase, is essential for the survival of ABC DLBCLs with wild-type CARD11. In addition, knockdown of proximal BCR subunits (IgM, Ig-κ, CD79A and CD79B) killed ABC DLBCLs with wild-type CARD11 but not other lymphomas. The BCRs in these ABC DLBCLs formed prominent clusters in the plasma membrane with low diffusion, similarly to BCRs in antigen-stimulated normal B cells. Somatic mutations affecting the immunoreceptor tyrosine-based activation motif (ITAM) signalling modules of CD79B and CD79A were detected frequently in ABC DLBCL biopsy samples but rarely in other DLBCLs and never in Burkitt’s lymphoma or mucosa-associated lymphoid tissue lymphoma. In 18% of ABC DLBCLs, one functionally critical residue of CD79B, the first ITAM tyrosine, was mutated. These mutations increased surface BCR expression and attenuated Lyn kinase, a feedback inhibitor of BCR signalling. These findings establish chronic active BCR signalling as a new pathogenetic mechanism in ABC DLBCL, suggesting several therapeutic strategies.


Nature Reviews Immunology | 2002

LIPID RAFTS AND B-CELL ACTIVATION

Susan K. Pierce

The B-cell antigen receptor acts during B-cell activation both to initiate signalling cascades and to transport antigen into the cell for subsequent processing and presentation. Recent evidence indicates that membrane microdomains, termed lipid rafts, have a role in B-cell activation as platforms for B-cell receptor (BCR) signalling and might also act in antigen trafficking. Lipid rafts might facilitate the regulation of the BCR during B-cell development by B-cell co-receptors, and during viral infection. So, lipid rafts seem to be an important new piece of the B-cell signalling puzzle.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray

Peter D. Crompton; Matthew A. Kayala; Boubacar Traore; Kassoum Kayentao; Aissata Ongoiba; Greta E. Weiss; Douglas M. Molina; Chad Burk; Michael Waisberg; Algis Jasinskas; Xiaolin Tan; Safiatou Doumbo; Didier Doumtabe; Younoussou Kone; David L. Narum; Xiaowu Liang; Ogobara K. Doumbo; Louis H. Miller; Denise L. Doolan; Pierre Baldi; Philip L. Felgner; Susan K. Pierce

Abs are central to malaria immunity, which is only acquired after years of exposure to Plasmodium falciparum (Pf). Despite the enormous worldwide burden of malaria, the targets of protective Abs and the basis of their inefficient acquisition are unknown. Addressing these knowledge gaps could accelerate malaria vaccine development. To this end, we developed a protein microarray containing ∼23% of the Pf 5,400-protein proteome and used this array to probe plasma from 220 individuals between the ages of 2–10 years and 18–25 years in Mali before and after the 6-month malaria season. Episodes of malaria were detected by passive surveillance over the 8-month study period. Ab reactivity to Pf proteins rose dramatically in children during the malaria season; however, most of this response appeared to be short-lived based on cross-sectional analysis before the malaria season, which revealed only modest incremental increases in Ab reactivity with age. Ab reactivities to 49 Pf proteins measured before the malaria season were significantly higher in 8–10-year-old children who were infected with Pf during the malaria season but did not experience malaria (n = 12) vs. those who experienced malaria (n = 29). This analysis also provided insight into patterns of Ab reactivity against Pf proteins based on the life cycle stage at which proteins are expressed, subcellular location, and other proteomic features. This approach, if validated in larger studies and in other epidemiological settings, could prove to be a useful strategy for better understanding fundamental properties of the human immune response to Pf and for identifying previously undescribed vaccine targets.


Immunity | 2008

The B Cell Receptor Governs the Subcellular Location of Toll-like Receptor 9 Leading to Hyperresponses to DNA-Containing Antigens

Akanksha Chaturvedi; David W. Dorward; Susan K. Pierce

Synergistic engagement of the B cell receptor (BCR) and Toll-like receptor 9 (TLR9) in response to DNA-containing antigens underlies the production of many autoantibodies in systemic autoimmune diseases. However, the molecular basis of this synergistic engagement is not known. Given that these receptors are spatially segregated, with the BCR on the cell surface and TLR9 in endocytic vesicles, achieving synergy must involve unique mechanisms. We show that upon antigen binding, the BCR initiates signaling at the plasma membrane and continues to signal to activate MAP kinases as it traffics to autophagosome-like compartments. The internalized BCR signals through a phospholipase-D-dependent pathway to recruit TLR9-containing endosomes to the autophagosome via the microtubular network. The recruitment of TLR9 to the autophagosomes was necessary for hyperactivation of MAP kinases. This unique mechanism for BCR-induced TLR9 recruitment resulting in B cells hyperresponses may provide new targets for therapeutics for autoimmune diseases.


Journal of Immunology | 2009

Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area.

Greta E. Weiss; Peter D. Crompton; Shanping Li; Laura A. Walsh; Susan Moir; Boubacar Traore; Kassoum Kayentao; Aissata Ongoiba; Ogobara K. Doumbo; Susan K. Pierce

Epidemiological observations in malaria endemic areas have long suggested a deficiency in the generation and maintenance of B cell memory to Plasmodium falciparum (Pf) in individuals chronically reinfected with the parasite. Recently, a functionally and phenotypically distinct population of FCRL4+ hyporesponsive memory B cells (MBCs) was reported to be expanded in HIV-infected individuals with high viral loads. In this study, we provide evidence that a phenotypically similar atypical MBC population is significantly expanded in Pf-exposed Malian adults and children as young as 2 years of age as compared with healthy U.S. adult controls. The number of these atypical MBCs was higher in children with chronic asymptomatic Pf infections compared with uninfected children, suggesting that the chronic presence of the parasite may drive expansion of these distinct MBCs. This is the first description of an atypical MBC phenotype associated with malaria. Understanding the origin and function of these MBCs could be important in informing the design of malaria vaccines.


Immunity | 2002

Lipid Rafts Unite Signaling Cascades with Clathrin to Regulate BCR Internalization

Angela Stoddart; Michelle Dykstra; Bruce K. Brown; Wenxia Song; Susan K. Pierce; Frances M. Brodsky

A major function of the B cell is the internalization of antigen through the BCR for processing and presentation to T cells. While there is evidence suggesting that lipid raft signaling may regulate internalization, the molecular machinery coordinating these two processes remains to be defined. Here we present a link between the B cell signaling and internalization machinery and show that Src-family kinase activity is required for inducible clathrin heavy chain phosphorylation, BCR colocalization with clathrin, and regulated internalization. An analysis of different B cell lines shows that BCR uptake occurs only when clathrin is associated with rafts and is tyrosine phosphorylated following BCR crosslinking. We therefore propose that lipid rafts spatially organize signaling cascades with clathrin to regulate BCR internalization.


Journal of Clinical Investigation | 2010

Advances and challenges in malaria vaccine development

Peter D. Crompton; Susan K. Pierce; Louis H. Miller

Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.


Nature Immunology | 2005

The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer.

Pavel Tolar; Hae Won Sohn; Susan K. Pierce

Binding of antigen to the B cell antigen receptor (BCR) triggers signaling that ultimately leads to B cell activation. Using quantitative fluorescence resonance energy transfer imaging, we provide evidence here that the BCR is a monomer on the surface of resting cells. Binding of multivalent antigen clustered the BCR, resulting in the simultaneous phosphorylation of and a conformational change in the BCR cytoplasmic domains from a closed to an open form. Notably, the open conformation required immunoreceptor tyrosine-activation motif and continuous Src family kinase activity but not binding of the kinase Syk. Thus, the initiation of BCR signaling is a very dynamic process accompanied by reversible conformational changes induced by Src family kinase activity.


Immunity | 2001

The CD19/CD21 Complex Functions to Prolong B Cell Antigen Receptor Signaling from Lipid Rafts

Anu Cherukuri; Paul C. Cheng; Hae Won Sohn; Susan K. Pierce

The CD19/CD21 complex functions to significantly enhance B cell antigen receptor (BCR) signaling in response to complement-tagged antigens. Recent studies showed that following antigen binding the BCR translocates into plasma membrane lipid rafts that serve as platforms for BCR signaling. Here, we show that the binding of complement-tagged antigens stimulates the translocation of both the BCR and the CD19/CD21 complex into lipid rafts, resulting in prolonged residency in and signaling from the rafts, as compared to BCR cross-linking alone. When coligated to the BCR, the CD19/CD21 complex retards the internalization and degradation of the BCR. The colocalization and stabilization of the BCR and the CD19/CD21 complex in plasma membrane lipid rafts represents a novel mechanism by which a coreceptor enhances BCR signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion

Prakash Srinivasan; Wandy L. Beatty; Ababacar Diouf; Raul Herrera; Xavier Ambroggio; J. Kathleen Moch; Jessica S. Tyler; David L. Narum; Susan K. Pierce; John C. Boothroyd; J. David Haynes; Louis H. Miller

The commitment of Plasmodium merozoites to invade red blood cells (RBCs) is marked by the formation of a junction between the merozoite and the RBC and the coordinated induction of the parasitophorous vacuole. Despite its importance, the molecular events underlying the parasite’s commitment to invasion are not well understood. Here we show that the interaction of two parasite proteins, RON2 and AMA1, known to be critical for invasion, is essential to trigger junction formation. Using antibodies (Abs) that bind near the hydrophobic pocket of AMA1 and AMA1 mutated in the pocket, we identified RON2’s binding site on AMA1. Abs specific for the AMA1 pocket blocked junction formation and the induction of the parasitophorous vacuole. We also identified the critical residues in the RON2 peptide (previously shown to bind AMA1) that are required for binding to the AMA1 pocket, namely, two conserved, disulfide-linked cysteines. The RON2 peptide blocked junction formation but, unlike the AMA1-specific Ab, did not block formation of the parasitophorous vacuole, indicating that formation of the junction and parasitophorous vacuole are molecularly distinct steps in the invasion process. Collectively, these results identify the binding of RON2 to the hydrophobic pocket of AMA1 as the step that commits Plasmodium merozoites to RBC invasion and point to RON2 as a potential vaccine candidate.

Collaboration


Dive into the Susan K. Pierce's collaboration.

Top Co-Authors

Avatar

Louis H. Miller

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter D. Crompton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hae Won Sohn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael Waisberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Boubacar Traore

University of the Sciences

View shared research outputs
Top Co-Authors

Avatar

Mirna Pena

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anu Cherukuri

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Munir Akkaya

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Akanksha Chaturvedi

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge