Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan K. Wood is active.

Publication


Featured researches published by Susan K. Wood.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Social stress-induced bladder dysfunction: potential role of corticotropin-releasing factor

Susan K. Wood; Madelyn A. Baez; Seema Bhatnagar; Rita J. Valentino

Psychological stress can impact on visceral function with pathological consequences, although the mechanisms underlying this are poorly understood. Here we demonstrate that social stress produces marked changes in bladder structure and function. Male rats were subjected to repeated (7 days) social defeat stress using the resident-intruder model. Measurement of the voiding pattern indicated that social stress produced urinary retention. Consistent with this, bladder size was increased in rats exposed to social stress. Moreover, this was negatively correlated to the latency to assume a subordinate posture, implying an association between passive behavior and bladder dysfunction. In vivo cystometry revealed distinct changes in urodynamic function in rats exposed to social stress, including increased bladder capacity, micturition volume, intermicturition interval, and the presence of non-micturition-related contractions, resembling overactive bladder. In contrast to social stress, repeated restraint (7 days) did not affect voiding, bladder weight, or urodynamics. The stress-related neuropeptide corticotropin-releasing factor (CRF) is present in spinal projections of Barringtons nucleus that regulate the micturition reflex and has an inhibitory influence in this pathway. Social stress, but not restraint, increased the number of CRF-immunoreactive neurons in Barringtons nucleus. Additionally, social stress increased CRF mRNA in Barringtons nucleus. Together, the results imply that social stress-induced CRF upregulation in Barringtons nucleus neurons results in urinary retention and, eventually, bladder dysfunction, perhaps as a visceral component of a behavioral coping response. This mechanism may underlie dysfunctional voiding in children and/or contribute to the development of stress-induced bladder disorders in adulthood.


Neuropsychopharmacology | 2013

Social Stress Engages Opioid Regulation of Locus Coeruleus Norepinephrine Neurons and Induces a State of Cellular and Physical Opiate Dependence

Nayla Chaijale; Andre L. Curtis; Susan K. Wood; Xiao-Yan Zhang; Seema Bhatnagar; Beverly A. S. Reyes; Elisabeth J. Van Bockstaele; Rita J. Valentino

Stress is implicated in diverse psychiatric disorders including substance abuse. The locus coeruleus–norepinephrine (LC–NE) system is a major stress response system that is also a point of intersection between stress neuromediators and endogenous opioids and so may be a site at which stress can influence drug-taking behaviors. As social stress is a common stressor for humans, this study characterized the enduring impact of repeated social stress on LC neuronal activity. Rats were exposed to five daily consecutive sessions of social stress using the resident-intruder model or control manipulation. LC discharge rate recorded 2 days after the last manipulation was decreased in stressed rats compared with controls. By 10 days after the last manipulation, LC rates were comparable between groups. Systemic administration of the opiate antagonist, naloxone, robustly increased LC discharge rate in a manner suggestive of opiate withdrawal, selectively in stressed rats when administered 2 or 10 days after the last manipulation. This was accompanied by behavioral signs of mild opiate withdrawal. Western blot and electron microscopic studies indicated that repeated social stress decreased corticotropin-releasing factor type 1 receptor and increased μ-opioid receptor levels in the LC. Together, the results suggest that repeated social stress engages endogenous opioid modulation of LC activity and induces signs of cellular and physical opiate dependence that endure after the stress. These cellular effects may predispose individuals with a history of repeated social stress to substance abuse behaviors.


Biological Psychiatry | 2015

Inflammatory Factors Mediate Vulnerability to a Social Stress-Induced Depressive-like Phenotype in Passive Coping Rats

Susan K. Wood; Christopher S. Wood; Calliandra M. Lombard; Catherine S. Lee; Xiao-Yan Zhang; Julie E. Finnell; Rita J. Valentino

BACKGROUND Coping strategy impacts susceptibility to psychosocial stress. The locus coeruleus (LC) and dorsal raphe (DR) are monoamine nuclei implicated in stress-related disorders. Our goal was to identify genes in these nuclei that distinguish active and passive coping strategies in response to social stress. METHODS Rats were exposed to repeated resident-intruder stress and coping strategy determined. Gene and protein expression in the LC and DR were determined by polymerase chain reaction array and enzyme-linked immunosorbent assay and compared between active and passive stress-coping and unstressed rats. The effect of daily interleukin (IL)-1 receptor antagonist before stress on anhedonia was also determined. RESULTS Rats exhibited passive or active coping strategies based on a short latency (SL) or longer latency (LL) to assume a defeat posture, respectively. Stress differentially regulated 19 and 26 genes in the LC and DR of SL and LL rats, respectively, many of which encoded for inflammatory factors. Notably, Il-1β was increased in SL and decreased in LL rats in both the LC and DR. Protein changes were generally consistent with a proinflammatory response to stress in SL rats selectively. Stress produced anhedonia selectively in SL rats and this was prevented by IL-1 receptor antagonist, consistent with a role for IL-1β in stress vulnerability. CONCLUSIONS This study highlighted distinctions in gene expression related to coping strategy in response to social stress. Passive coping was associated with a bias toward proinflammatory processes, particularly IL-1β, whereas active coping and resistance to stress-related pathology was associated with suppression of inflammatory processes.


Neuroscience & Biobehavioral Reviews | 2015

Evidence for the role of corticotropin-releasing factor in major depressive disorder.

R. Parrish Waters; Marion Rivalan; D. A. Bangasser; Jan M. Deussing; Marcus Ising; Susan K. Wood; Florian Holsboer; Cliff H. Summers

Major depressive disorder (MDD) is a devastating disease affecting over 300 million people worldwide, and costing an estimated 380 billion Euros in lost productivity and health care in the European Union alone. Although a wealth of research has been directed toward understanding and treating MDD, still no therapy has proved to be consistently and reliably effective in interrupting the symptoms of this disease. Recent clinical and preclinical studies, using genetic screening and transgenic rodents, respectively, suggest a major role of the CRF1 gene, and the central expression of CRF1 receptor protein in determining an individuals risk of developing MDD. This gene is widely expressed in brain tissue, and regulates an organisms immediate and long-term responses to social and environmental stressors, which are primary contributors to MDD. This review presents the current state of knowledge on CRF physiology, and how it may influence the occurrence of symptoms associated with MDD. Additionally, this review presents findings from multiple laboratories that were presented as part of a symposium on this topic at the annual 2014 meeting of the International Behavioral Neuroscience Society (IBNS). The ideas and data presented in this review demonstrate the great progress that has been made over the past few decades in our understanding of MDD, and provide a pathway forward toward developing novel treatments and detection methods for this disorder.


Neurobiology of Stress | 2015

Resilience to the effects of social stress: Evidence from clinical and preclinical studies on the role of coping strategies

Susan K. Wood; Seema Bhatnagar

The most common form of stress encountered by people stems from ones social environment and is perceived as more intense than other types of stressors. One feature that may be related to differential resilience or vulnerability to stress is the type of strategy used to cope with the stressor, either active or passive coping. This review focuses on models of social stress in which individual differences in coping strategies produce resilience or vulnerability to the effects of stress. Neurobiological mechanisms underlying these individual differences are discussed. Overall, the literature suggests that there are multiple neural mechanisms that underlie individual differences in stress-induced resilience and vulnerability. How these mechanisms interact with one another to produce a resilient or vulnerable phenotype is not understood and such mechanisms have been poorly studied in females and in early developmental periods. Finally, we propose that resilience may be stress context specific and resilience phenotypes may need to be fine-tuned to suit a shifting environment.


Current Neuropharmacology | 2014

Individual differences in the neurobiology of social stress: implications for depression-cardiovascular disease comorbidity.

Susan K. Wood

Stress initiates a cascade of complex neural and peripheral changes that promote healthy adaption to stress, but when unabated, leads to pathology. Fascinating individual differences arise in the ability to cope with a stressor, rendering an individual more or less likely to develop stress-induced pathologies such as depression, anxiety, and cardiovascular disease. In this review we evaluate recent findings that investigate the neural underpinnings of adopting a passive or active coping response during social defeat stress. Because passive coping is associated with vulnerability to stress-related pathologies and active coping confers resiliency, understanding neurobiological adaptations associated with these diverse coping strategies may reveal biomarkers or targets impacting stress susceptibility. The co-occurrence of stress-induced depression and cardiovascular disease is becoming increasingly clear. Therefore this review focuses on the central mechanisms capable of contributing to psychopathology and cardiovascular disease such as corticotropin releasing factor, neuropeptide Y, monoamines, cytokines and oxidative stress. The impetus for this review is to highlight neurobiological systems that warrant further evaluation for their contribution to the pathophysiology of depression-cardiovascular disease comorbidity.


Brain Behavior and Immunity | 2017

The protective effects of resveratrol on social stress-induced cytokine release and depressive-like behavior.

Julie E. Finnell; Calliandra M. Lombard; Michael Melson; Narendra P. Singh; Mitzi Nagarkatti; Prakash S. Nagarkatti; Jim R. Fadel; Christopher S. Wood; Susan K. Wood

Social stress is a risk factor for psychiatric disorders, however only a subset of the population is susceptible while others remain resilient. Inflammation has been linked to the pathogenesis of psychosocial disorders in humans and may underlie these individual differences. Using a resident-intruder paradigm capable of revealing individual differences in coping behavior and inflammatory responses, the present study determined if resveratrol (RSV; 0, 10, 30mg/kg/day) protected against persistent stress-induced inflammation in socially defeated rats. Furthermore, the antidepressant efficacy of RSV was evaluated using the sucrose preference test. Active coping rats were characterized by more time spent in upright postures and increased defeat latencies versus passive coping rats. Five days after defeat, flow cytometry revealed enhanced stimulation of proinflammatory proteins (IL-β, TNF-α) in spleen cells of passive rats as compared to active coping and controls, an effect that was blocked by both doses of RSV. Furthermore, only passive coping rats exhibited increased proinflammatory proteins (IL-1β, TNF-α, GM-CSF) in the locus coeruleus (LC), a noradrenergic brain region implicated in depression. Notably, only 30mg/kg RSV blocked LC neuroinflammation and importantly, was the only dose that blocked anhedonia. Alternatively, while stress had minimal impact on resting cytokines in the dorsal raphe (DR), RSV dose-dependently reduced DR cytokine expression. However, this did not result in changes in indoleamine 2,3-dioxygenase activity or serotonin levels. Taken together, these data suggest that social stress-induced depressive-like behavior evident in passive coping rats may be driven by stress-induced neuroinflammation and highlight natural anti-inflammatory agents to protect against social stress-related consequences.


Neurobiology of Stress | 2016

Neuroinflammation at the interface of depression and cardiovascular disease: Evidence from rodent models of social stress

Julie E. Finnell; Susan K. Wood

A large body of evidence has emerged linking stressful experiences, particularly from ones social environment, with psychiatric disorders. However, vast individual differences emerge in susceptibility to developing stress-related pathology which may be due to distinct differences in the inflammatory response to social stress. Furthermore, depression is an independent risk factor for cardiovascular disease, another inflammatory-related disease, and results in increased mortality in depressed patients. This review is focused on discussing evidence for stress exposure resulting in persistent or sensitized inflammation in one individual while this response is lacking in others. Particular focus will be directed towards reviewing the literature underlying the impact that neuroinflammation has on neurotransmitters and neuropeptides that could be involved in the pathogenesis of comorbid depression and cardiovascular disease. Finally, the theme throughout the review will be to explore the notion that stress-induced inflammation is a key player in the high rate of comorbidity between psychosocial disorders and cardiovascular disease.


Neuropsychopharmacology | 2006

Facilitation of cardiac vagal activity by CRF-R1 antagonists during swim stress in rats.

Susan K. Wood; Robert E Verhoeven; Aaron Z Savit; Kenner C. Rice; Peter S Fischbach; James H. Woods

Exposure to stressors that elicit fear and feelings of hopelessness can cause severe vagal activation leading to bradycardia, syncope, and sudden death. These phenomena though documented, are difficult to diagnose, treat clinically, and prevent. Therefore, an animal model incorporating these cardiovascular conditions could be useful. The present study examined ‘sinking’ during a 2-h swim stress, a phenomenon that occurs in 50% of rats during 25°C water exposure. Concurrent measurements of body temperature, immobility, heart rate (HR), and PR interval (a measure of vagal activity) were made. Neither decreases in immobility nor variations in hypothermia during swim were correlated with sinking. Bradycardia was more severe in sinking rats (average minimum HR±SEM; 143±13 vs 247±14; p<0.01), and PR interval was elevated (p<0.0001). To examine potential modulation of vagal activity during stress, corticotropin-relasing factor (CRF) receptor antagonists (antalarmin, R121919 and astressin B), a glucocorticoid receptor antagonist (RU486), and a peripherally acting cholinergic antagonist (methylatropine nitrate) were administered. The centrally acting CRF antagonist, antalarmin (32 mg/kg), produced elongation of the PR interval (p<0.0001), robust bradycardia (135±18; p<0.001), and increased sinking (92%; p<0.05), and methylatropine nitrate (3.2 mg/kg) blocked these effects. Corroborating these data, two different CRF antagonists, R121919 (30 mg/kg) and astressin B (intracerebroventricular (i.c.v.), 0.03 μg/rat) increased sinking to 100%. RU486 (20 mg/kg) blocked HPA axis negative feedback and decreased percent sinking to 25%. From these studies, we concluded that sinking during a 2-h water exposure was a result of extreme vagal hyperactivity. Furthermore, stress-induced CRF release may serve to protect against elevated cardiac vagal activity.


Neuropsychopharmacology | 2016

Adolescent Social Stress Produces an Enduring Activation of the Rat Locus Coeruleus and Alters its Coherence with the Prefrontal Cortex.

Gerard Zitnik; Andre L. Curtis; Susan K. Wood; Jay Arner; Rita J. Valentino

Early life stress is associated with the development of psychiatric disorders. Because the locus coeruleus-norepinephrine (LC-NE) system is a major stress-response system that is implicated in psychopathology, developmental differences in the response of this system to stress may contribute to increased vulnerability. Here LC single unit and network activity were compared between adult and adolescent rats during resident-intruder stress. In some rats, LC and medial prefrontal cortex (mPFC) coherence was quantified. The initial stress tonically activated LC neurons and induced theta oscillations, while simultaneously decreasing LC auditory-evoked responses in both age groups. Stress increased LC-mPFC coherence within the theta range. With repeated exposures, adolescent LC neuronal and network activity remained elevated even in the absence of the stressor and were unresponsive to stressor presentation. In contrast, LC neurons of adult rats exposed to repeated social stress were relatively inhibited in the absence of the stressor and mounted robust responses upon stressor presentation. LC sensory-evoked responses were selectively blunted in adolescent rats exposed to repeated social stress. Finally, repeated stress decreased LC-mPFC coherence in the high frequency range (beta and gamma) while maintaining strong coherence in the theta range, selectively in adolescents. Together, these results suggest that adaptive mechanisms that promote stress recovery and maintain basal activity of the brain norepinephrine system in the absence of stress are not fully developed or are vulnerable stress-induced impairments in adolescence. The resulting sustained activation of the LC-NE system after repeated social stress may adversely impact cognition and future social behavior of adolescents.

Collaboration


Dive into the Susan K. Wood's collaboration.

Top Co-Authors

Avatar

Rita J. Valentino

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher S. Wood

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Julie E. Finnell

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Seema Bhatnagar

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Michael Melson

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Akhila R. Padi

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Andre L. Curtis

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Casey M. Moffitt

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Catherine S. Lee

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge