Susan Kantor
Royal Melbourne Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susan Kantor.
Bone | 2012
Egon Perilli; Andrew M. Briggs; Susan Kantor; John Codrington; John D. Wark; Ian H. Parkinson; Nicola L. Fazzalari
Significant relationships exist between areal bone mineral density (BMD) derived from dual energy X-ray absorptiometry (DXA) and bone strength. However, the predictive validity of BMD for osteoporotic vertebral fractures remains suboptimal. The diagnostic sensitivity of DXA in the lumbar spine may be improved by assessing BMD from lateral-projection scans, as these might better approximate the objective of measuring the trabecular-rich bone in the vertebral body, compared to the commonly-used posterior-anterior (PA) projections. Nowadays, X-ray micro-computed tomography (μCT) allows non-destructive three-dimensional structural characterization of entire bone segments at high resolution. In this study, human lumbar cadaver spines were examined ex situ by DXA in lateral and PA projections, as well as by μCT, with the aims (1) to investigate the ability of bone quantity measurements obtained by DXA in the lateral projection and in the PA projection, to predict variations in bone quantity measurements obtained by μCT, and (2) to assess their respective capabilities to predict whole vertebral body strength, determined experimentally. Human cadaver spines were scanned by DXA in PA projections and lateral projections. Bone mineral content (BMC) and BMD for L2 and L3 vertebrae were determined. The L2 and L3 vertebrae were then dissected and entirely scanned by μCT. Total bone volume (BV(tot)=cortical+trabecular), trabecular bone volume (BV), and trabecular bone volume fraction (BV/TV) were calculated over the entire vertebrae. The vertebral bodies were then mechanically tested to failure in compression, to determine ultimate load. The variables BV(tot), BV, and BV/TV measured by μCT were better predicted by BMC and BMD measured by lateral-projection DXA, with higher R(2) values and smaller standard errors of the estimate (R(2)=0.65-0.90, SEE=11%-18%), compared to PA-projection DXA (R(2)=0.33-0.53, SEE=22%-34%). The best predictors of ultimate load were BV(tot) and BV assessed by μCT (R(2)=0.88 and R(2)=0.81, respectively), and BMC and BMD from lateral-projection DXA (R(2)=0.82 and R(2)=0.70, respectively). Conversely, BMC and BMD from PA-projection DXA were lower predictors of ultimate load (R(2)=0.49 and R(2)=0.37, respectively). This ex vivo study highlights greater capabilities of lateral-projection DXA to predict variations in vertebral body bone quantity as measured by μCT, and to predict vertebral strength as assessed experimentally, compared to PA-projection DXA. This provides basis for further exploring the clinical application of lateral-projection DXA analysis.
Epilepsia | 2010
Susan M. Senn; Susan Kantor; Ingrid J. Poulton; Margaret J. Morris; Natalie A. Sims; Terence J. O’Brien; John D. Wark
Purpose: Bone disease and fractures are common with chronic antiepileptic drug (AED) therapy, but the underlying mechanisms are poorly understood. This study aimed to characterize adverse bone effects of valproate and to identify mouse strains either resistant or sensitive to these effects.
Journal of Clinical Densitometry | 2005
Andrew M. Briggs; John D. Wark; Susan Kantor; Rayson Teh; Alison M. Greig; Nicola L. Fazzalari; Kim L. Bennell
Analysis of apparent bone mineral density (BMD) in the lumbar spine is commonly based on anteroposterior (AP) scanning using dual-energy X-ray absorptiometry (DXA). Although not widely used, clinically important information can also be derived from lateral scanning. Vertebral bone density, and therefore strength, can may vary in different subregions of the vertebral body. Therefore, subregional BMD measurements might be informative about fracture risk. However, the intrarater and interrater precision of in vivo subregional BMD assessments from lateral DXA remains unknown. Ten normal, young (mean: 24 yr) and 10 older (mean: 63 yr) individuals with low BMD were scanned on one occasion using an AP/lateral sequence. Each lateral scan was reanalyzed six times at L2 by three raters to determine the intrarater and interrater precision in selecting seven regions of interest (subregions). Precision was expressed using percentage coefficients of variation (% CV) and intraclass correlation coefficients (ICC). Intrarater precision ranged from ICC(1,1) 0.971 to 0.996 (% CV: 0.50-3.68) for the young cohort and ICC(1,1) 0.934 to 0.993 (% CV: 1.46-5.30) for the older cohort. Interrater precision ranged from ICC(2,1) 0.804 to 0.915 (% CV: 1.11-2.35) for the young cohort and ICC(2,1) 0.912 to 0.984 (% CV: 1.85-4.32) for the older cohort. Scanning a subgroup of participants twice with repositioning was used to assess short-term in vivo precision. At L2, short-term in vivo precision ranged from ICC(1,1) 0.867 to 0.962 (% CV: 3.38-9.61), at L3 from ICC(1,1) 0.961 to 0.988 (% CV: 2.02-5.57) and using an L2/L3 combination from ICC(1,1) 0.942 to 0.980 (% CV: 2.04-4.61). This study demonstrated moderate to high precision for subregional analysis of apparent BMD in the lumbar spine using lateral DXA in vivo.
Epilepsia | 2014
Sandra J. Petty; Susan Kantor; Kate M. Lawrence; Samuel F. Berkovic; Marnie Collins; Keith D. Hill; Joanna Makovey; Philip N. Sambrook; Terence J. O'Brien; John D. Wark
Chronic treatment with valproate (VPA) is commonly associated with weight gain, which potentially has important health implications, in particular increased central fat distribution. We utilized a VPA‐discordant same‐sex, twin and matched sibling pair study design to primarily examine for differences in fat distribution between patients with epilepsy treated with VPA compared to their matched twin or sibling control. Weight, blood pressure, and leptin levels were assessed.
Obesity Research & Clinical Practice | 2007
Susan M. Senn; Susan Kantor; B. J. Leury; Sofianos Andrikopoulos; Terence J. O’Brien; Margaret J. Morris; Joseph Proietto; John D. Wark
SUMMARY PURPOSE Validation of dual-energy X-ray absorptiometry (DXA) with the Hologic QDR 4500A (QDR 4500) Fan Beam X-ray densitometer for in vivo assessment of body fat content in mice. METHODS Precision of DXA fat measurement was assessed by repeated in vivo scanning and re-positioning of different sized mice (17.6, 24.6, 34.2 g). DXA fat and total mass measurements were correlated with dissected tissue weights in 240 female adult mice of seven strains (mean weights 21.9-26.8 g). Accuracy of DXA fat tissue measurements was assessed by chemical analysis in a subgroup of 40 female decapitated mice (mean weights 19.6-28.4 g). RESULTS Precision of the DXA measurements for fat mass was dependent on body weight (mean coefficient of variation, CV, 34.2 g mouse: 7.53 ± 0.13%; 24.6 g mouse: 32.16 ± 0.17%; 17.6 g mouse: 40.64 ± 0.06%). A moderate to high correlation with the dissected fat tissue weights was found for all seven strains: r = 0.52, p ≤ 0.01 (AJ) to r = 0.83, p ≤ 0.01 (CBA, both mean weight = 22 g). The correlation of DXA measurements with the chemical analysis of the carcass was good to excellent (r = 0.80, p ≤ 0.01). CONCLUSION The results demonstrate that the QDR 4500A DXA can be utilised for in vivo measurements of fat content in mice weighing as little as 20 g, with excellent correlations between tissue dissections and chemical analysis demonstrating high consistency of the measurements. DXA values were consistently slightly lower than those by direct chemical analysis; however, the limits of agreement (mean difference 0.96 g) demonstrated good concordance between the two methods.
International Journal of Endocrinology | 2013
Louise I. Manning; Andrew M. Briggs; Sharon Van Doornum; Ashwini Kale; Susan Kantor; John D. Wark
Individuals with glucocorticoid-induced osteoporosis experience vertebral fractures at an increased rate and at higher vertebral areal bone mineral density (aBMD) than individuals with primary osteoporosis. Standard posteroanterior- (PA-) projection dual energy X-ray absorptiometry (DXA) lacks the diagnostic sensitivity required for reliable estimation of vertebral fracture risk in individuals. Assessment of subregional vertebral aBMD using lateral-projection DXA may improve the predictive value of DXA parameters for fracture. One hundred and four individuals were recruited and grouped for this study: primary osteoporosis with no history of vertebral fracture (n = 43), glucocorticoid-induced bone loss (n = 13), and healthy controls (n = 48). Standard PA-projection and supine-lateral scans were performed, and lateral scans were analysed according to an established protocol to measure aBMD within 6 subregions. Main effects for subregion and group were assessed and observed, by ANCOVA. Ratios were calculated between subregions and compared between groups, to overcome the potentially confounding influence of variability in subregional geometry. Significantly lower values were observed in the glucocorticoid group for the ratios of (i) anterior subregion: whole vertebral body and (ii) posterior: whole vertebral body when compared to the primary osteoporosis and control groups (P < 0.05). Lower anterior subregional aBMD in individuals on glucocorticoid therapy may help to explain the increased vertebral fracture risk in this patient group.
Journal of Clinical Densitometry | 2010
Andrew M. Briggs; Egon Perilli; Ian H. Parkinson; Tim V. Wrigley; Nicola L. Fazzalari; Susan Kantor; John D. Wark
Bone | 2006
Andrew M. Briggs; John D. Wark; Susan Kantor; Nicola L. Fazzalari; Alison M. Greig; Kim L. Bennell
Journal of Bone and Mineral Metabolism | 2012
Andrew M. Briggs; Egon Perilli; Ian H. Parkinson; Susan Kantor; Tim V. Wrigley; Nicola L. Fazzalari; John D. Wark
Calcified Tissue International | 2016
Tahir Hakami; Terence J. O’Brien; Sandra J. Petty; Mary Sakellarides; Jemma J. Christie; Susan Kantor; Marian Todaro; Alexandra Gorelik; Markus J. Seibel; Raju Yerra; John D. Wark