Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan L. Edwards is active.

Publication


Featured researches published by Susan L. Edwards.


The Journal of Experimental Biology | 2005

Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport

Graham R. Scott; James B. Claiborne; Susan L. Edwards; Patricia M. Schulte; Chris M. Wood

SUMMARY We have explored the molecular basis for differences in physiological function between the gills and opercular epithelium of the euryhaline killifish Fundulus heteroclitus. These tissues are functionally similar in seawater, but in freshwater the gills actively absorb Na+ but not Cl–, whereas the opercular epithelium actively absorbs Cl– but not Na+. These differences in freshwater physiology are likely due to differences in absolute levels of gene expression (measured using real-time PCR), as several proteins important for Na+ transport, namely Na+,H+-exchanger 2 (NHE2), carbonic anhydrase 2 (CA2), Na+,HCO3–cotransporter 1, and V-type H+-ATPase, were expressed at 3- to over 30-fold higher absolute levels in the gills. In gills, transfer from 10% seawater to freshwater increased the activity of Na+,K+-ATPase by twofold (from 12 h to 7 days), increased the expression of NHE2 (at 12 h) and CA2 (from 12 h to 7 days), and decreased the expression of NHE3 (from 12 h to 3 days). In opercular epithelium, NHE2 was not expressed; furthermore, Na+,K+-ATPase activity was unchanged after transfer to freshwater, CA2 mRNA levels decreased, and NHE3 levels increased. Consistent with their functional similarities in seawater, killifish gills and opercular epithelium expressed Na+,K+-ATPase α1a, Na+,K+,2Cl–cotransporter 1 (NKCC1), cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel and the signalling protein 14-3-3a at similar absolute levels. Furthermore, NKCC1 and CFTR were suppressed equally in each tissue after freshwater transfer, and 14-3-3a mRNA increased in both. These results provide insight into the mechanisms of ion transport by killifish gills and opercular epithelia, and demonstrate a potential molecular basis for the differences in physiological function between these two organs.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2001

Expression of Na(+) / H(+) exchanger mRNA in the gills of the Atlantic hagfish (Myxine glutinosa) in response to metabolic acidosis.

Susan L. Edwards; James B. Claiborne; Alison I. Morrison-Shetlar; Tes Toop

Sodium/proton exchangers (NHE) are transmembrane proteins that facilitate the exchange of a Na(+) ion for a H(+) ion across cellular membranes. The NHE are present in the gills of fishes and are believed to function in acid-base regulation by driving the extrusion of protons across the branchial epithelium in exchange for Na(+) in the water. In this study, we have used reverse transcriptase-polymerase chain reaction (RT-PCR) to detect the presence of a branchial NHE in the gills of the Atlantic hagfish, Myxine glutinosa. The subsequent partial cDNA sequence shares homology with other vertebrate and invertebrate NHE isoforms. In addition, using semi-quantitative, multiplex RT-PCR we demonstrate that mRNA expression of hagfish gill NHE is upregulated following an induced metabolic acidosis. Expression was increased to 4.4 times basal levels at 2-h post-infusion and had decreased to 1.6 times basal by 6 h. Expression had returned to basal levels by 24-h post-infusion. The inference from this study is that a gill NHE which is potentially important in acid-base regulation has been present in the vertebrate lineage since before the divergence of the hagfishes from the main vertebrate line.


The Journal of Experimental Biology | 2006

Na + /H + antiporter, V-H + -ATPase and Na + /K + -ATPase immunolocalization in a marine teleost (Myoxocephalus octodecemspinosus)

Justin S. Catches; Julie M. Burns; Susan L. Edwards; James B. Claiborne

SUMMARY Long-term pH compensation in a marine teleost requires the transepithelial excretion of H+ across the gill epithelium. H+ efflux in the longhorn sculpin (Myoxocephalus octodecemspinosus) is dependent on external sodium ion concentration and is inhibited by known inhibitors of Na+/H+ exchangers. Our model for proton transport suggests acid-excreting cells in the gill with an apical Na+/H+ antiporter and basolateral Na+/K+-ATPase. This model is similar to mammalian kidney and elasmobranch gill epithelium in which a basolateral electrogenic-vacuolar proton pump (V-H+-ATPase) localizes to base-excreting cells. The objective of this study was to detect the presence and location of membrane transporters in marine fish gills using immunohistochemical staining. Our data indicate the presence of an apical and subapical Na+/H+-exchanger 2 (NHE2) in the sculpin gill. NHE2 is present in large, ovoid chloride cells and often colocalizes in the same cells as Na+/K+-ATPase. We also detected V-H+-ATPase immunoreactivity, predominantly in cells at the base of the lamellae, with staining patterns indicative of a basolateral location. The 85 kDa protein detected on immunoblots with anti-NHE2 antibodies was found in both control and acid-infused animals and did not change following a large acute acidosis over 8 h.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2010

The curious case of the chemical composition of hagfish tissues—50 years on☆

Suzanne Currie; Susan L. Edwards

Modern hagfishes are considered to be the most primitive of the living craniates and along with their close jawless agnathan relative, the lamprey, take us back an astonishing 500 million years to the base of the vertebrate evolutionary tree. The unique osmoconforming strategy of the hagfish, whereby the osmotic constituents of the blood plasma bear more of a resemblance to marine invertebrates than vertebrates, has been classically depicted in comparative physiology textbooks for many years. Fifty years ago in this journal, Bellamy and Chester Jones [Bellamy and Chester Jones, 1961. CBP 3, 173-183] published a paper on the chemical composition of the tissues of the Atlantic hagfish, Myxine glutinosa. This publication was one of a flurry of papers published in the 50s, 60s and early 70s focused on describing the ionic and osmotic components of this bizarre fish. Here we take a retrospective look at the research that has taken place on these intriguing animals prior to and following the Bellamy and Chester Jones manuscript, focusing on tissue chemical compositions, the possible role of amino acids, and our current view on ion regulation, metabolism and hypoxia tolerance.


Cell and Tissue Research | 2013

Immunohistochemical localization of urea and ammonia transporters in two confamilial fish species, the ureotelic gulf toadfish (Opsanus beta) and the ammoniotelic plainfin midshipman (Porichthys notatus)

Carol Bucking; Susan L. Edwards; Paul Tickle; Craig P. Smith; M. Danielle McDonald; Patrick J. Walsh

This study aims to illustrate potential transport mechanisms behind the divergent approaches to nitrogen excretion seen in the ureotelic toadfish (Opsanus beta) and the ammoniotelic plainfin midshipman (Porichthys notatus). Specifically, we wish to confirm the expression of a urea transporter (UT), which is found in the gill of the toadfish and which is responsible for the unique “pulsing” nature of urea excretion and to localize the transporter within specific gill cells and at specific cellular locations. Additionally, the localization of ammonia transporters (Rhesus glycoproteins; Rhs) within the gill of both the toadfish and midshipman was explored. Toadfish UT (tUT) was found within Na+-K+-ATPase (NKA)-enriched cells, i.e., ionocytes (probably mitochondria-rich cells), especially along the basolateral membrane and potentially on the apical membrane. In contrast, midshipman UT (pnUT) immunoreactivity did not colocalize with NKA immunoreactivity and was not found along the filaments but instead within the lamellae. The cellular location of Rh proteins was also dissimilar between the two fish species. In toadfish gills, the Rh isoform Rhcg1 was expressed in both NKA-reactive cells and non-reactive cells, whereas Rhbg and Rhcg2 were only expressed in the latter. In contrast, Rhbg, Rhcg1 and Rhcg2 were expressed in both NKA-reactive and non-reactive cells of midshipman gills. In an additional transport epithelium, namely the intestine, the expression of both UTs and Rhs was similar between the two species, with only subtle differences being observed.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2017

Flexible ammonia handling strategies using both cutaneous and branchial epithelia in the highly ammonia tolerant Pacific hagfish.

Alexander M. Clifford; Alyssa M. Weinrauch; Susan L. Edwards; Michael P. Wilkie; Greg G. Goss

Hagfish consume carrion, potentially exposing them to hypoxia, hypercapnia, and high environmental ammonia (HEA). We investigated branchial and cutaneous ammonia handling strategies by which Pacific hagfish (Eptatretus stoutii) tolerate and recover from high ammonia loading. Hagfish were exposed to HEA (20 mmol/l) for 48 h to elevate plasma total ammonia (TAmm) levels before placement into divided chambers for a 4-h recovery period in ammonia-free seawater where ammonia excretion (JAmm) was measured independently in the anterior and posterior compartments. Localized HEA exposures were also conducted by subjecting hagfish to HEA in either the anterior or posterior compartments. During recovery, HEA-exposed animals increased JAmm in both compartments, with the posterior compartment comprising ~20% of the total JAmm compared with ~11% in non-HEA-exposed fish. Plasma TAmm increased substantially when whole hagfish and the posterior regions were exposed to HEA. Alternatively, plasma TAmm did not elevate after anterior localized HEA exposure. JAmm was concentration dependent (0.05-5 mmol/l) across excised skin patches at up to eightfold greater rates than in skin sections that were excised from HEA-exposed hagfish. Skin excised from more posterior regions displayed greater JAmm than those from more anterior regions. Immunohistochemistry with hagfish-specific anti-rhesus glycoprotein type c (α-hRhcg; ammonia transporter) antibody was characterized by staining on the basal aspect of hagfish epidermis while Western blotting demonstrated greater expression of Rhcg in more posterior skin sections. We conclude that cutaneous Rhcg proteins are involved in cutaneous ammonia excretion by Pacific hagfish and that this mechanism could be particularly important during feeding.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

Ammonia excretion in the Atlantic hagfish (Myxine glutinosa) and responses of an Rhc glycoprotein

Susan L. Edwards; Justin M Arnold; Salvatore D. Blair; Margaret E Pray; Rachel R Bradley; Olivia Erikson; Patrick J. Walsh

Hagfishes, the most ancient of the extant craniates, demonstrate a high tolerance for a number of unfavorable environmental conditions, including elevated ammonia. Proposed mechanisms of ammonia excretion in aquatic organisms include vesicular NH(4)(+) transport and release by exocytosis in marine crabs, and passive NH(3) diffusion, active NH(4)(+) transport, and paracellular leakage of NH3 or NH(4)(+) across the gills of fishes. Recently, an emerging paradigm suggests that Rhesus glycoproteins play a vital role in ammonia transport in both aquatic invertebrates and vertebrates. This study has identified an Rh glycoprotein ortholog from the gills of Atlantic hagfish. The hagfish Rhcg shares a 56-60% amino acid identity to other vertebrate Rhcg cDNAs. Sequence information was used to produce an anti-hagfish Rhcg (hRhcg) antibody. We have used hRhcg to localize protein expression to epithelial cells of the gill and the skin. In addition, we have quantified hRhcg expression following exposure to elevated plasma ammonia levels. Animals exposed to a 3 mmol/kg NH(4)Cl load resulted in significantly elevated plasma ammonia concentrations compared with controls for up to 4 h postinjection. This correlated with net ammonia excretion rates that were also significantly elevated for up to 4 h postinjection. Rhcg mRNA expression in both the gill and skin was significantly elevated by 15 min and 1 h, respectively, and hRhcg protein expression in gills was significantly elevated at 2, 4, and 8 h postinjection. These results demonstrate a potential role for Rhcg in the excretion of ammonia in the Atlantic hagfish.


Journal of Fish Biology | 2010

Molecular identification of Na(+)-H(+) exchanger isoforms (NHE2) in the gills of the euryhaline teleost Fundulus heteroclitus.

Susan L. Edwards; Jill C. Weakley; A. W. Diamanduros; James B. Claiborne

In the current study, reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) PCR were used to clone full-length putative Na(+)-H(+) exchanger isoforms (NHE2a) cDNA from the gills of Fundulus heteroclitus. The 2480 bp cDNA includes a coding region for a protein that shows a 57% amino acid homology to rabbit NHE2. These sequences allowed data mining of available fish genome data, which revealed at least three NHE2 subtypes in some teleost species.


Australasian Emergency Nursing Journal | 2016

Miscarriage in Australia: The geographical inequity of healthcare services

Susan L. Edwards; Melanie Birks; Ysanne Chapman; Karen Yates

Complications in early pregnancy can lead to pregnancy loss (miscarriage) and ultimately the presentation of a woman to their local emergency department (ED). Miscarriage is a common occurrence, with one in six pregnancies resulting in pregnancy loss.(1) Unfortunately medical and nursing care does not change the likelihood of a threatened miscarriage progressing to pregnancy loss; this is a highly emotional and stressful time for the woman and her family. Research has shown that women have often felt dissatisfied with the care provided in the emergency department and have reported lower levels of satisfaction (Geller et al., 2010(2), Indig et al., 2011(3)). This paper explores the challenges in the provision of emergency department healthcare for women presenting to metropolitan EDs and compares these to those faced by women who present to non-metropolitan EDs with early pregnancy complications.


Journal of Experimental Zoology | 2002

Acid-base regulation in fishes: cellular and molecular mechanisms

James B. Claiborne; Susan L. Edwards; Alison I. Morrison-Shetlar

Collaboration


Dive into the Susan L. Edwards's collaboration.

Top Co-Authors

Avatar

James B. Claiborne

Georgia Southern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Tunev

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly A. Hyndman

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Michael P. Wilkie

Wilfrid Laurier University

View shared research outputs
Top Co-Authors

Avatar

Jill C. Weakley

Georgia Southern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge