Susan L. Patterson
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susan L. Patterson.
Neuron | 1996
Susan L. Patterson; Ted Abel; Thomas A.S Deuel; Kelsey C. Martin; Jack C Rose; Eric R. Kandel
Brain-derived neurotrophic factor (BDNF) is expressed at high levels in hippocampal neurons, and its expression is modulated by neural activity. Knockout mice can be used to study the roles of molecules like BDNF in synaptic plasticity with more molecular specificity than is possible using pharmacological approaches. Because in conventional knockouts the disrupted gene product is absent in all tissues throughout the life of the animal, developmental effects may complicate the interpretation of deficits in the adult. Rescue experiments can help to distinguish between developmental and acute requirements for the missing gene product. We here demonstrate that treatment of hippocampal slices from BDNF knockout mice with recombinant BDNF completely reverses deficits in long-term potentiation and significantly improves deficits in basal synaptic transmission at the Schaffer collateral-CA1 synapse. Thus, BDNF has an acute role in hippocampal synaptic function.
Neuron | 2001
Susan L. Patterson; Christopher Pittenger; Alexei Morozov; Kelsey C. Martin; Heather Scanlin; Carrie T. Drake; Eric R. Kandel
Long-lasting forms of synaptic plasticity like the late phase of LTP (L-LTP) typically require an elevation of cAMP, the recruitment of the cAMP-dependent protein kinase (PKA), and ultimately the activation of transcription and translation; some forms also require brain-derived neurotrophic factor (BDNF). Both cAMP and BDNF can activate mitogen-activated protein kinase (MAPK/ERK), which also plays a role in LTP. However, little is known about the mechanisms whereby cAMP, BDNF, and MAPK interact. We find that increases in cAMP can rapidly activate the BDNF receptor TrkB and induce BDNF-dependent long-lasting potentiation at the Schaffer collateral-CA1 synapse in hippocampus. Surprisingly, in these BDNF-dependent forms of potentiation, which are also MAPK dependent, TrkB activation is not critical for the activation of MAPK but instead appears to modulate the subcellular distribution and nuclear translocation of the activated MAPK.
Neuron | 2003
Stanislav S. Zakharenko; Susan L. Patterson; Ioannis Dragatsis; Scott Zeitlin; Steven A. Siegelbaum; Eric R. Kandel; Alexei Morozov
Brain-derived neurotrophic factor (BDNF) has been implicated in several forms of long-term potentiation (LTP) at different hippocampal synapses. Using two-photon imaging of FM 1-43, a fluorescent marker of synaptic vesicle cycling, we find that BDNF is selectively required for those forms of LTP at Schaffer collateral synapses that recruit a presynaptic component of expression. BDNF-dependent forms of LTP also require activation of L-type voltage-gated calcium channels. One form of LTP with presynaptic expression, theta burst LTP, is thought to be of particular behavioral importance. Using restricted genetic deletion to selectively disrupt BDNF production in either the entire forebrain (CA3 and CA1) or in only the postsynaptic CA1 neuron, we localize the source of BDNF required for LTP to presynaptic neurons. These results suggest that long-term synaptic plasticity has distinct presynaptic and postsynaptic modules. Release of BDNF from CA3 neurons is required to recruit the presynaptic, but not postsynaptic, module of plasticity.
Neuron | 2005
Angel Barco; Susan L. Patterson; Juan M. Alarcon; Petra Gromova; Manuel Mata-Roig; Alexei Morozov; Eric R. Kandel
Expression of VP16-CREB, a constitutively active form of CREB, in hippocampal neurons of the CA1 region lowers the threshold for eliciting the late, persistent phase of long-term potentiation (L-LTP) in the Schaffer collateral pathway. This VP16-CREB-mediated L-LTP differs from the conventional late phase of LTP in not being dependent on new transcription. This finding suggests that in the transgenic mice the mRNA transcript(s) encoding the protein(s) necessary for this form of L-LTP might already be present in CA1 neurons in the basal condition. We used high-density oligonucleotide arrays to identify the mRNAs differentially expressed in the hippocampus of transgenic and wild-type mice. We then explored the contribution of the most prominent candidate genes revealed by our screening, namely prodynorphin, BDNF, and MHC class I molecules, to the facilitated LTP of VP16-CREB mice. We found that the overexpression of brain-derived neurotrophic factor accounts for an important component of this phenotype.
The Journal of Neuroscience | 1999
Carrie T. Drake; Teresa A. Milner; Susan L. Patterson
Neurotrophins acting at the trkB receptor have been shown to be important modulators of activity-dependent plasticity in the hippocampus, but the mechanisms underlying these effects are not yet well understood. To identify the cellular and subcellular targets of trkB ligands in the adult rat hippocampal formation, full-length trkB receptor immunoreactivity (trkB-IR) was localized using electron microscopy. trkB-IR was present in the glutamatergic pyramidal and granule cells. Labeling in these neurons appeared as discrete clusters and was primarily in axons, excitatory-type axon terminals, and dendritic spines and to a lesser extent in somata and dendritic shafts. trkB-IR was commonly found on the plasma membrane of dendritic spines, whereas in other subcellular regions trkB-IR was often intracellular. Labeling was strikingly dense within axon initial segments, suggesting extensive receptor trafficking. trkB-IR was not confined to pyramidal and granule cells. Dense trkB-IR was found in occasional interneuron axon initial segments, some axon terminals forming inhibitory-type synapses onto somata and dendritic shafts, and excitatory-type terminals likely to originate extrahippocampally. This suggests that trkB is contained in some GABAergic interneurons, neuromodulatory (e.g., cholinergic, dopaminergic, and noradrenergic) afferents, and/or glutamatergic afferents. These data indicate that full-length trkB receptor activation may modulate glutamatergic pathways of the trisynaptic circuit both presynaptically at axon terminals and initial segments and postsynaptically at dendritic spines and shafts. Signaling via catalytic trkB may also presynaptically affect inhibitory and modulatory neurons. A pan-trkB antibody labeled the same neuronal populations as the full-length-specific trkB antiserum, but the labels differed in density at various subcellular sites. These findings provide an ultrastructural foundation for further examining the mechanisms through which neurotrophins acting at trkB receptors contribute to synaptic plasticity.
The Journal of Neuroscience | 2011
Ruth M. Barrientos; Matthew G. Frank; Nicole Y. Crysdale; Timothy R. Chapman; Jared T. Ahrendsen; Heidi E.W. Day; Serge Campeau; Linda R. Watkins; Susan L. Patterson; Steven F. Maier
We have previously found that healthy aged rats are more likely to suffer profound memory impairments following a severe bacterial infection than are younger adult rats. Such a peripheral challenge is capable of producing a neuroinflammatory response, and in the aged brain this response is exaggerated and prolonged. Normal aging primes, or sensitizes, microglia, and this appears to be the source of this amplified inflammatory response. Among the outcomes of this exaggerated neuroinflammatory response are impairments in synaptic plasticity and reductions of brain-derived neurotrophic factor (BDNF), both of which have been associated with cognitive impairments. Since it has been shown that physical exercise increases BDNF mRNA in the hippocampus, the present study examined voluntary exercise in 24-month-old F344×BN rats as a neuroprotective therapeutic in our bacterial infection model. Although aged rats ran only an average of 0.7 km per week, this small amount of exercise was sufficient to completely reverse infection-induced impairments in hippocampus-dependent long-term memory compared with sedentary animals. Strikingly, exercise prevented the infection-induced exaggerated neuroinflammatory response and the blunted BDNF mRNA induction seen in the hippocampus of sedentary rats. Moreover, voluntary exercise abrogated age-related microglial sensitization, suggesting a possible mechanism for exercise-induced neuroprotection in aging.
The Journal of Neuroscience | 2011
Giuseppe P. Cortese; Ruth M. Barrientos; Steven F. Maier; Susan L. Patterson
For reasons that are not well understood, aging significantly increases brain vulnerability to challenging life events. High-functioning older individuals often experience significant cognitive decline after an inflammatory event such as surgery, infection, or injury. We have modeled this phenomenon in rodents and have previously reported that a peripheral immune challenge (intraperitoneal injection of live Escherichia coli) selectively disrupts consolidation of hippocampus-dependent memory in aged (24-month-old), but not young (3-month-old), F344xBN rats. More recently, we have demonstrated that this infection-evoked memory deficit is mirrored by a selective deficit in long-lasting synaptic plasticity in the hippocampus. Interestingly, these deficits occur in forms of long-term memory and synaptic plasticity known to be strongly dependent on brain-derived neurotrophic factor (BDNF). Here, we begin to test the hypothesis that the combination of aging and an infection might disrupt production or processing of BDNF protein in the hippocampus, decreasing the availability of BDNF for plasticity-related processes at synaptic sites. We find that mature BDNF is markedly reduced in Western blots of hippocampal synaptoneurosomes prepared from aged animals following infection. This reduction is blocked by intra-cisterna magna administration of the anti-inflammatory cytokine IL-1Ra (interleukin 1-specific receptor antagonist). Levels of the pan-neurotrophin receptor p75NTR and the BDNF receptor TrkB (tropomyosin receptor kinase B) are not significantly altered in these synaptoneurosomes, but phosphorylation of TrkB and downstream activation of PLCγ1 (phospholipase Cγ1) and ERK (extracellular response kinase) are attenuated—observations consistent with reduced availability of mature BDNF to activate TrkB signaling. These data suggest that inflammation-evoked reductions in BDNF at synapses might contribute to inflammation-evoked disruptions in long-term memory and synaptic plasticity in aging.
The Journal of Neuroscience | 2010
Timothy R. Chapman; Ruth M. Barrientos; Jared T. Ahrendsen; Steven F. Maier; Susan L. Patterson
Variability in cognitive functioning increases markedly with age, as does cognitive vulnerability to physiological and psychological challenges. Exploring the basis of this vulnerability may provide important insights into the mechanisms underlying aging-associated cognitive decline. As we have previously reported, the cognitive abilities of aging (24-month-old) F344 × BN rats are generally good, but are more vulnerable to the consequences of a peripheral immune challenge (an intraperitoneal injection of live Escherichia coli) than those of their younger (3-month-old) counterparts. Four days after the injection, the aging, but not the young rats show profound memory deficits, specific to the consolidation of hippocampus-dependent memory processes. Here, we have extended these observations, using hippocampal slices to examine for the first time the combined effects of aging and a recent infection on several forms of synaptic plasticity. We have found that the specific deficit in long-lasting memory observed in the aged animals after infection is mirrored by a specific deficit in a form of long-lasting synaptic plasticity. The late-phase long-term potentiation induced in area CA1 using theta-burst stimulation is particularly compromised by the combined effects of aging and infection—a deficit that can be ameliorated by intra-cisterna magna administration of the naturally occurring antiinflammatory cytokine IL-1Ra (interleukin-1 receptor antagonist). These data support the idea that the combination of aging and a negative life event such as an infection might produce selective, early-stage failures of synaptic plasticity in the hippocampus, with corresponding selective deficits in memory.
Brain Behavior and Immunity | 2009
Ruth M. Barrientos; Timothy R. Chapman; Jared T. Ahrendsen; Nicole Y. Crysdale; Matthew G. Frank; Serge Campeau; Heidi E.W. Day; Linda R. Watkins; Susan L. Patterson; S.F. Maier
The commensal microbiota have many beneficial effects on health and participate in host defense against enteric pathogens. Previous studies using culture-based methods have demonstrated that stressor exposure can change microbial populations in the intestines. However, the vast majority of bacteria in the intestines are strict anaerobes that have not yet been cultured. Thus, molecular sequencing was used to characterize both anaerobic and facultatively anaerobic microbial populations in cecal contents of mice restrained overnight for up to seven consecutive nights. The prolonged restraint stressor significantly reduced microbial richness in the cecum, and consistently reduced the relative abundance of anaerobic bacteria in the family Porphyromonadaceae. The stressor also caused a concomitant overgrowth of Gram-negative facultatively anaerobic bacteria. This microbiota profile has previously been associated with increased colonization of enteric pathogens. Thus, mice were exposed to prolonged restraint prior to oral challenge with the murine pathogen Citrobacter rodentium, which causes a disease that is similar to human infection with enteropathogenic Escherichia coli. Exposure to the restraint stressor increased C. rodentium colonization by approximately 5 log units. The restrained mice also had prolonged elevations of C. rodentium-induced IL-1b and TNF-a in colonic tissue. The association between stressor-induced changes in microbial richness, increased pathogen levels, and prolonged cytokine production suggests that stressor-induced changes of the intestinal microbiota increase the ability of enteric pathogens to colonize the intestines and cause disease.
Neurobiology of Aging | 2012
Timothy R. Chapman; Ruth M. Barrientos; Jared T. Ahrendsen; Jennifer Michelle Hoover; Steven F. Maier; Susan L. Patterson