Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan M. Gapstur is active.

Publication


Featured researches published by Susan M. Gapstur.


Diabetes Care | 2010

Diabetes and cancer: a consensus report.

Edward Giovannucci; David M. Harlan; Michael C. Archer; Richard M. Bergenstal; Susan M. Gapstur; Laurel A. Habel; Michael Pollak; Judith G. Regensteiner; Douglas Yee

Epidemiologic evidence suggests that cancer incidence is associated with diabetes as well as certain diabetes risk factors and diabetes treatments. This consensus statement of experts assembled jointly by the American Diabetes Association and the American Cancer Society reviews the state of science concerning 1) the association between diabetes and cancer incidence or prognosis, 2) risk factors common to both diabetes and cancer, 3) possible biologic links between diabetes and cancer risk, and 4) whether diabetes treatments influence risk of cancer or cancer prognosis. In addition, key unanswered questions for future research are posed.


CA: A Cancer Journal for Clinicians | 2012

American Cancer Society guidelines on nutrition and physical activity for cancer prevention

Lawrence H. Kushi; Colleen Doyle; Marji McCullough; Cheryl L. Rock; Wendy Demark-Wahnefried; Elisa V. Bandera; Susan M. Gapstur; Alpa V. Patel; Kimberly S. Andrews; Ted Gansler

The American Cancer Society (ACS) publishes Nutrition and Physical Activity Guidelines to serve as a foundation for its communication, policy, and community strategies and, ultimately, to affect dietary and physical activity patterns among Americans. These Guidelines, published approximately every 5 years, are developed by a national panel of experts in cancer research, prevention, epidemiology, public health, and policy, and they reflect the most current scientific evidence related to dietary and activity patterns and cancer risk. The ACS Guidelines focus on recommendations for individual choices regarding diet and physical activity patterns, but those choices occur within a community context that either facilitates or creates barriers to healthy behaviors. Therefore, this committee presents recommendations for community action to accompany the 4 recommendations for individual choices to reduce cancer risk. These recommendations for community action recognize that a supportive social and physical environment is indispensable if individuals at all levels of society are to have genuine opportunities to choose healthy behaviors. The ACS Guidelines are consistent with guidelines from the American Heart Association and the American Diabetes Association for the prevention of coronary heart disease and diabetes, as well as for general health promotion, as defined by the 2010 Dietary Guidelines for Americans and the 2008 Physical Activity Guidelines for Americans. CA Cancer J Clin 2012.


The New England Journal of Medicine | 2013

50-Year Trends in Smoking-Related Mortality in the United States

Michael J. Thun; Brian D. Carter; Diane Feskanich; Neal D. Freedman; Ross L. Prentice; Alan D. Lopez; Patricia Hartge; Susan M. Gapstur

BACKGROUND The disease risks from cigarette smoking increased in the United States over most of the 20th century, first among male smokers and later among female smokers. Whether these risks have continued to increase during the past 20 years is unclear. METHODS We measured temporal trends in mortality across three time periods (1959-1965, 1982-1988, and 2000-2010), comparing absolute and relative risks according to sex and self-reported smoking status in two historical cohort studies and in five pooled contemporary cohort studies, among participants who became 55 years of age or older during follow-up. RESULTS For women who were current smokers, as compared with women who had never smoked, the relative risks of death from lung cancer were 2.73, 12.65, and 25.66 in the 1960s, 1980s, and contemporary cohorts, respectively; corresponding relative risks for male current smokers, as compared with men who had never smoked, were 12.22, 23.81, and 24.97. In the contemporary cohorts, male and female current smokers also had similar relative risks for death from chronic obstructive pulmonary disease (COPD) (25.61 for men and 22.35 for women), ischemic heart disease (2.50 for men and 2.86 for women), any type of stroke (1.92 for men and 2.10 for women), and all causes combined (2.80 for men and 2.76 for women). Mortality from COPD among male smokers continued to increase in the contemporary cohorts in nearly all the age groups represented in the study and within each stratum of duration and intensity of smoking. Among men 55 to 74 years of age and women 60 to 74 years of age, all-cause mortality was at least three times as high among current smokers as among those who had never smoked. Smoking cessation at any age dramatically reduced death rates. CONCLUSIONS The risk of death from cigarette smoking continues to increase among women and the increased risks are now nearly identical for men and women, as compared with persons who have never smoked. Among men, the risks associated with smoking have plateaued at the high levels seen in the 1980s, except for a continuing, unexplained increase in mortality from COPD.


Environmental Health Perspectives | 2014

An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure

Richard T. Burnett; C. Arden Pope; Majid Ezzati; Casey Olives; Stephen S Lim; Sumi Mehta; Hwashin H. Shin; Gitanjali M. Singh; Bryan Hubbell; Michael Brauer; H. Ross Anderson; Kirk R. Smith; John R. Balmes; Nigel Bruce; Haidong Kan; Francine Laden; Annette Prüss-Üstün; Michelle C. Turner; Susan M. Gapstur; W. Ryan Diver; Aaron Cohen

Background: Estimating the burden of disease attributable to long-term exposure to fine particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude of the relative risk (RR) function. However, adequate direct evidence to identify the shape of the mortality RR functions at the high ambient concentrations observed in many places in the world is lacking. Objective: We developed RR functions over the entire global exposure range for causes of mortality in adults: ischemic heart disease (IHD), cerebrovascular disease (stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC). We also developed RR functions for the incidence of acute lower respiratory infection (ALRI) that can be used to estimate mortality and lost-years of healthy life in children < 5 years of age. Methods: We fit an integrated exposure–response (IER) model by integrating available RR information from studies of ambient air pollution (AAP), second hand tobacco smoke, household solid cooking fuel, and active smoking (AS). AS exposures were converted to estimated annual PM2.5 exposure equivalents using inhaled doses of particle mass. We derived population attributable fractions (PAFs) for every country based on estimated worldwide ambient PM2.5 concentrations. Results: The IER model was a superior predictor of RR compared with seven other forms previously used in burden assessments. The percent PAF attributable to AAP exposure varied among countries from 2 to 41 for IHD, 1 to 43 for stroke, < 1 to 21 for COPD, < 1 to 25 for LC, and < 1 to 38 for ALRI. Conclusions: We developed a fine particulate mass–based RR model that covered the global range of exposure by integrating RR information from different combustion types that generate emissions of particulate matter. The model can be updated as new RR information becomes available. Citation: Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson HR, Smith KR, Balmes JR, Bruce NG, Kan H, Laden F, Prüss-Ustün A, Turner MC, Gapstur SM, Diver WR, Cohen A. 2014. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect 122:397–403; http://dx.doi.org/10.1289/ehp.1307049


CA: A Cancer Journal for Clinicians | 2010

Diabetes and Cancer: A Consensus Report

Edward Giovannucci; David M. Harlan; Michael C. Archer; Richard M. Bergenstal; Susan M. Gapstur; Laurel A. Habel; Michael Pollak; Judith G. Regensteiner; Douglas Yee

Epidemiologic evidence suggests that cancer incidence is associated with diabetes as well as certain diabetes risk factors and treatments. This consensus statement of experts assembled jointly by the American Diabetes Association and the American Cancer Society reviews the state of science concerning 1) the association between diabetes and cancer incidence or prognosis; 2) risk factors common to both diabetes and cancer; 3) possible biologic links between diabetes and cancer risk; and 4) whether diabetes treatments influence the risk of cancer or cancer prognosis. In addition, key unanswered questions for future research are posed. CA Cancer J Clin 2010.


The Lancet | 2016

Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents.

Emanuele Di Angelantonio; Shilpa N. Bhupathiraju; David Wormser; Pei Gao; Stephen Kaptoge; Amy Berrington de Gonzalez; Benjamin J Cairns; Rachel R. Huxley; Chandra L. Jackson; Grace Joshy; Sarah Lewington; JoAnn E. Manson; Neil Murphy; Alpa V. Patel; Jonathan M. Samet; Mark Woodward; Wei Zheng; Maigen Zhou; Narinder Bansal; Aurelio Barricarte; Brian Carter; James R. Cerhan; Rory Collins; George Davey Smith; Xianghua Fang; Oscar H. Franco; Jane Green; Jim Halsey; Janet S Hildebrand; Keum Ji Jung

Summary Background Overweight and obesity are increasing worldwide. To help assess their relevance to mortality in different populations we conducted individual-participant data meta-analyses of prospective studies of body-mass index (BMI), limiting confounding and reverse causality by restricting analyses to never-smokers and excluding pre-existing disease and the first 5 years of follow-up. Methods Of 10 625 411 participants in Asia, Australia and New Zealand, Europe, and North America from 239 prospective studies (median follow-up 13·7 years, IQR 11·4–14·7), 3 951 455 people in 189 studies were never-smokers without chronic diseases at recruitment who survived 5 years, of whom 385 879 died. The primary analyses are of these deaths, and study, age, and sex adjusted hazard ratios (HRs), relative to BMI 22·5–<25·0 kg/m2. Findings All-cause mortality was minimal at 20·0–25·0 kg/m2 (HR 1·00, 95% CI 0·98–1·02 for BMI 20·0–<22·5 kg/m2; 1·00, 0·99–1·01 for BMI 22·5–<25·0 kg/m2), and increased significantly both just below this range (1·13, 1·09–1·17 for BMI 18·5–<20·0 kg/m2; 1·51, 1·43–1·59 for BMI 15·0–<18·5) and throughout the overweight range (1·07, 1·07–1·08 for BMI 25·0–<27·5 kg/m2; 1·20, 1·18–1·22 for BMI 27·5–<30·0 kg/m2). The HR for obesity grade 1 (BMI 30·0–<35·0 kg/m2) was 1·45, 95% CI 1·41–1·48; the HR for obesity grade 2 (35·0–<40·0 kg/m2) was 1·94, 1·87–2·01; and the HR for obesity grade 3 (40·0–<60·0 kg/m2) was 2·76, 2·60–2·92. For BMI over 25·0 kg/m2, mortality increased approximately log-linearly with BMI; the HR per 5 kg/m2 units higher BMI was 1·39 (1·34–1·43) in Europe, 1·29 (1·26–1·32) in North America, 1·39 (1·34–1·44) in east Asia, and 1·31 (1·27–1·35) in Australia and New Zealand. This HR per 5 kg/m2 units higher BMI (for BMI over 25 kg/m2) was greater in younger than older people (1·52, 95% CI 1·47–1·56, for BMI measured at 35–49 years vs 1·21, 1·17–1·25, for BMI measured at 70–89 years; pheterogeneity<0·0001), greater in men than women (1·51, 1·46–1·56, vs 1·30, 1·26–1·33; pheterogeneity<0·0001), but similar in studies with self-reported and measured BMI. Interpretation The associations of both overweight and obesity with higher all-cause mortality were broadly consistent in four continents. This finding supports strategies to combat the entire spectrum of excess adiposity in many populations. Funding UK Medical Research Council, British Heart Foundation, National Institute for Health Research, US National Institutes of Health.


PLOS Genetics | 2010

Multiple Independent Loci at Chromosome 15q25.1 Affect Smoking Quantity: a Meta-Analysis and Comparison with Lung Cancer and COPD

Nancy L. Saccone; Robert Culverhouse; Tae-Hwi Schwantes-An; Dale S. Cannon; Xiangning Chen; Sven Cichon; Ina Giegling; Shizhong Han; Younghun Han; Kaisu Keskitalo-Vuokko; Xiangyang Kong; Maria Teresa Landi; Jennie Z. Ma; Susan E. Short; Sarah H. Stephens; Victoria L. Stevens; Lingwei Sun; Yufei Wang; Angela S. Wenzlaff; Steven H. Aggen; Naomi Breslau; Peter Broderick; Nilanjan Chatterjee; Jingchun Chen; Andrew C. Heath; Markku Heliövaara; Nicole R. Hoft; David J. Hunter; Majken K. Jensen; Nicholas G. Martin

Recently, genetic association findings for nicotine dependence, smoking behavior, and smoking-related diseases converged to implicate the chromosome 15q25.1 region, which includes the CHRNA5-CHRNA3-CHRNB4 cholinergic nicotinic receptor subunit genes. In particular, association with the nonsynonymous CHRNA5 SNP rs16969968 and correlates has been replicated in several independent studies. Extensive genotyping of this region has suggested additional statistically distinct signals for nicotine dependence, tagged by rs578776 and rs588765. One goal of the Consortium for the Genetic Analysis of Smoking Phenotypes (CGASP) is to elucidate the associations among these markers and dichotomous smoking quantity (heavy versus light smoking), lung cancer, and chronic obstructive pulmonary disease (COPD). We performed a meta-analysis across 34 datasets of European-ancestry subjects, including 38,617 smokers who were assessed for cigarettes-per-day, 7,700 lung cancer cases and 5,914 lung-cancer-free controls (all smokers), and 2,614 COPD cases and 3,568 COPD-free controls (all smokers). We demonstrate statistically independent associations of rs16969968 and rs588765 with smoking (mutually adjusted p-values<10−35 and <10−8 respectively). Because the risk alleles at these loci are negatively correlated, their association with smoking is stronger in the joint model than when each SNP is analyzed alone. Rs578776 also demonstrates association with smoking after adjustment for rs16969968 (p<10−6). In models adjusting for cigarettes-per-day, we confirm the association between rs16969968 and lung cancer (p<10−20) and observe a nominally significant association with COPD (p = 0.01); the other loci are not significantly associated with either lung cancer or COPD after adjusting for rs16969968. This study provides strong evidence that multiple statistically distinct loci in this region affect smoking behavior. This study is also the first report of association between rs588765 (and correlates) and smoking that achieves genome-wide significance; these SNPs have previously been associated with mRNA levels of CHRNA5 in brain and lung tissue.


PLOS Medicine | 2012

Leisure time physical activity of moderate to vigorous intensity and mortality: a large pooled cohort analysis.

Steven C. Moore; Alpa V. Patel; Charles E. Matthews; Amy Berrington de Gonzalez; Yikyung Park; Hormuzd A. Katki; Martha S. Linet; Elisabete Weiderpass; Kala Visvanathan; Kathy J. Helzlsouer; Michael J. Thun; Susan M. Gapstur; Patricia Hartge; I-Min Lee

Analyzing data from over 650,000 individuals, Dr. Steven Moore and colleagues report that greater amounts of leisure-time physical activity were associated with higher life expectancy across a wide range of activity levels and body mass index groups.


Cancer Epidemiology, Biomarkers & Prevention | 2012

The Role of Obesity in Cancer Survival and Recurrence

Wendy Demark-Wahnefried; Elizabeth A. Platz; Jennifer A. Ligibel; Cindy K. Blair; Kerry S. Courneya; Jeffrey A. Meyerhardt; Patricia A. Ganz; Cheryl L. Rock; Kathryn H. Schmitz; Thomas A. Wadden; Errol J. Philip; Bruce M. Wolfe; Susan M. Gapstur; Rachael Ballard-Barbash; Anne McTiernan; Lori M. Minasian; Linda Nebeling; Pamela J. Goodwin

Obesity and components of energy imbalance, that is, excessive energy intake and suboptimal levels of physical activity, are established risk factors for cancer incidence. Accumulating evidence suggests that these factors also may be important after the diagnosis of cancer and influence the course of disease, as well as overall health, well-being, and survival. Lifestyle and medical interventions that effectively modify these factors could potentially be harnessed as a means of cancer control. However, for such interventions to be maximally effective and sustainable, broad sweeping scientific discoveries ranging from molecular and cellular advances, to developments in delivering interventions on both individual and societal levels are needed. This review summarizes key discussion topics that were addressed in a recent Institute of Medicine Workshop entitled, “The Role of Obesity in Cancer Survival and Recurrence”; discussions included (i) mechanisms associated with obesity and energy balance that influence cancer progression; (ii) complexities of studying and interpreting energy balance in relation to cancer recurrence and survival; (iii) associations between obesity and cancer risk, recurrence, and mortality; (iv) interventions that promote weight loss, increased physical activity, and negative energy balance as a means of cancer control; and (v) future directions. Cancer Epidemiol Biomarkers Prev; 21(8); 1244–59. ©2012 AACR.


Cancer Epidemiology, Biomarkers & Prevention | 2011

Following cancer prevention guidelines reduces risk of cancer, cardiovascular disease and all-cause mortality

Marjorie L. McCullough; Alpa V. Patel; Lawrence H. Kushi; Roshni Patel; Walter C. Willett; Colleen Doyle; Michael J. Thun; Susan M. Gapstur

Background: Few studies have evaluated the combined impact of following recommended lifestyle behaviors on cancer, cardiovascular disease (CVD) and all-cause mortality, and most included tobacco avoidance. Because 80% of Americans are never or former smokers, it is important to consider the impact of other recommended behaviors. Methods: In 1992 and 1993, 111,966 nonsmoking men and women in the Cancer Prevention Study-II Nutrition Cohort completed diet and lifestyle questionnaires. A score ranging from 0 to 8 points was computed to reflect adherence to the American Cancer Society cancer prevention guidelines on body mass index, physical activity, diet, and alcohol consumption, with 8 points representing optimal adherence. Multivariable-adjusted relative risks (RR) of death and 95% CI were computed by Cox proportional hazard regression. Results: During 14 years of follow-up, 10,369 men and 6,613 women died. The RR of all-cause mortality was lower for participants with high (7, 8) versus low (0–2) scores (men, RR = 0.58, 95% CI: 0.53–0.62; women, RR = 0.58, 95% CI: 0.52–0.64). Inverse associations were found with CVD mortality (men, RR = 0.52, 95% CI: 0.45–0.59; women, RR = 0.42, 95% CI: 0.35–0.51) and cancer mortality (men, RR = 0.70, 95% CI: 0.61–0.80; women, RR = 0.76, 95% CI: 0.65–0.89). Similar associations, albeit not all statistically significant, were observed for never and former smokers. Conclusion: Adherence to cancer prevention guidelines for obesity, diet, physical activity, and alcohol consumption is associated with lower risk of death from cancer, CVD, and all causes in nonsmokers. Impact: Beyond tobacco avoidance, following other cancer prevention guidelines may substantially lower risk of premature mortality in older adults. Cancer Epidemiol Biomarkers Prev; 20(6); 1089–97. ©2011 AACR.

Collaboration


Dive into the Susan M. Gapstur's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark P. Purdue

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Demetrius Albanes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge