Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan M. Janicki is active.

Publication


Featured researches published by Susan M. Janicki.


Cell | 2010

ATM-Dependent Chromatin Changes Silence Transcription In cis to DNA Double-Strand Breaks

Niraj M. Shanbhag; Ilona U. Rafalska-Metcalf; Carlo Balane-Bolivar; Susan M. Janicki; Roger A. Greenberg

DNA double-strand breaks (DSBs) initiate extensive local and global alterations in chromatin structure, many of which depend on the ATM kinase. Histone H2A ubiquitylation (uH2A) on chromatin surrounding DSBs is one example, thought to be important for recruitment of repair proteins. uH2A is also implicated in transcriptional repression; an intriguing yet untested hypothesis is that this function is conserved in the context of DSBs. Using a novel reporter that allows for visualization of repair protein recruitment and local transcription in single cells, we describe an ATM-dependent transcriptional silencing program in cis to DSBs. ATM prevents RNA polymerase II elongation-dependent chromatin decondensation at regions distal to DSBs. Silencing is partially dependent on E3 ubiquitin ligases RNF8 and RNF168, whereas reversal of silencing relies on the uH2A deubiquitylating enzyme USP16. These findings give insight into the role of posttranslational modifications in mediating crosstalk between diverse processes occurring on chromatin.


Molecular Cancer Research | 2012

The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation.

David E. White; Ilona U. Rafalska-Metcalf; Alexey V. Ivanov; Andrea Corsinotti; Hongzhuang Peng; Sheng-Chung Lee; Didier Trono; Susan M. Janicki; Frank J. Rauscher

The repair of DNA damage in highly compact, transcriptionally silent heterochromatin requires that repair and chromatin packaging machineries be tightly coupled and regulated. KAP1 is a heterochromatin protein and co-repressor that binds to HP1 during gene silencing but is also robustly phosphorylated by Ataxia telangiectasia mutated (ATM) at serine 824 in response to DNA damage. The interplay between HP1-KAP1 binding/ATM phosphorylation during DNA repair is not known. We show that HP1α and unmodified KAP1 are enriched in endogenous heterochromatic loci and at a silent transgene prior to damage. Following damage, γH2AX and pKAP1-s824 rapidly increase and persist at these loci. Cells that lack HP1 fail to form discreet pKAP1-s824 foci after damage but levels are higher and more persistent. KAP1 is phosphorylated at serine 473 in response to DNA damage and its levels are also modulated by HP1. Unlike pKAP1-s824, pKAP1-s473 does not accumulate at damage foci but is diffusely localized in the nucleus. While HP1 association tempers KAP1 phosphorylation, this interaction also slows the resolution of γH2AX foci. Thus, HP1-dependent regulation of KAP1 influences DNA repair in heterochromatin. Mol Cancer Res; 10(3); 401–14. ©2011 AACR.


PLOS ONE | 2010

Single Cell Analysis of Transcriptional Activation Dynamics

Ilona U. Rafalska-Metcalf; Sara Lawrence Powers; Lucy M. Joo; Gary LeRoy; Susan M. Janicki

Background Gene activation is thought to occur through a series of temporally defined regulatory steps. However, this process has not been completely evaluated in single living mammalian cells. Methodology/Principal Findings To investigate the timing and coordination of gene activation events, we tracked the recruitment of GCN5 (histone acetyltransferase), RNA polymerase II, Brd2 and Brd4 (acetyl-lysine binding proteins), in relation to a VP16-transcriptional activator, to a transcription site that can be visualized in single living cells. All accumulated rapidly with the VP16 activator as did the transcribed RNA. RNA was also detected at significantly more transcription sites in cells expressing the VP16-activator compared to a p53-activator. After α-amanitin pre-treatment, the VP16-activator, GCN5, and Brd2 are still recruited to the transcription site but the chromatin does not decondense. Conclusions/Significance This study demonstrates that a strong activator can rapidly overcome the condensed chromatin structure of an inactive transcription site and supercede the expected requirement for regulatory events to proceed in a temporally defined order. Additionally, activator strength determines the number of cells in which transcription is induced as well as the extent of chromatin decondensation. As chromatin decondensation is significantly reduced after α-amanitin pre-treatment, despite the recruitment of transcriptional activation factors, this provides further evidence that transcription drives large-scale chromatin decondensation.


Journal of Cell Science | 2012

Single-cell analysis of Daxx and ATRX-dependent transcriptional repression

Alyshia Newhart; Ilona U. Rafalska-Metcalf; Tian Yang; Dmitri Negorev; Susan M. Janicki

Summary Histone H3.3 is a constitutively expressed H3 variant implicated in the epigenetic inheritance of chromatin structures. Recently, the PML-nuclear body (PML-NB)/Nuclear Domain 10 (ND10) proteins, Daxx and ATRX, were found to regulate replication-independent histone H3.3 chromatin assembly at telomeres and pericentric heterochromatin. As it is not completely understood how PML-NBs/ND10s regulate transcription and resistance to viral infection, we have used a CMV-promoter-regulated inducible transgene array, at which Daxx and ATRX are enriched, to delineate the mechanisms through which they regulate transcription. When integrated into HeLa cells, which express both Daxx and ATRX, the array is refractory to activation. However, transcription can be induced when ICP0, the HSV-1 E3 ubiquitin ligase required to reverse latency, is expressed. As ATRX and Daxx are depleted from the activated array in ICP0-expressing HeLa cells, this suggests that they are required to maintain a repressed chromatin environment. As histone H3.3 is strongly recruited to the ICP0-activated array but does not co-localize with the DNA, this also suggests that chromatin assembly is blocked during activation. The conclusion that the Daxx and ATRX pathway is required for transcriptional repression and chromatin assembly at this site is further supported by the finding that an array integrated into the ATRX-negative U2OS cell line can be robustly activated and that histone H3.3 is similarly recruited and unincorporated into the chromatin. Therefore, this study has important implications for understanding gene silencing, viral latency and PML-NB/ND10 function.


Journal of Cell Science | 2007

Show and tell: visualizing gene expression in living cells.

Ilona U. Rafalska-Metcalf; Susan M. Janicki

The development of non-invasive methods of visualizing proteins and nucleic acids in living cells has provided profound insight into how they move and interact with each other in vivo. It is possible to evaluate basic mechanisms of gene expression, and to define their temporal and spatial parameters by using this methodology to label endogenous genes and make reporter constructs that allow specific DNA and RNA regulatory elements to be localized. This Commentary highlights recent reports that have used these techniques to study nuclear organization, transcription factor dynamics and the kinetics of RNA synthesis. These studies show how imaging gene expression in single living cells can reveal new regulatory mechanisms. They also expand our understanding of the role of chromatin and RNA dynamics in modulating cellular responses to developmental and environmental signals.


Molecular Biology of the Cell | 2013

Sp100A promotes chromatin decondensation at a cytomegalovirus-promoter–regulated transcription site

Alyshia Newhart; Dmitri Negorev; Ilona U. Rafalska-Metcalf; Tian Yang; Gerd G. Maul; Susan M. Janicki

Sp100 isoforms differentially regulate a CMV-promoter–regulated transcription site, which can be visualized in single cells. Sp100A promotes decondensation and increases lysine acetylation. However, it cannot overcome Daxx- and ATRX-mediated repression, indicating that PML-NB/ND10 factors function within a regulatory hierarchy.


Cancer Research | 2014

Activation of SOX2 expression by BRD4-NUT oncogenic fusion drives neoplastic transformation in NUT midline carcinoma

Ranran Wang; Wei Liu; Christine M. Helfer; James E. Bradner; Jason L. Hornick; Susan M. Janicki; Christopher A. French; Jianxin You

BRD4 is implicated in the pathogenesis of a number of different cancers. It is also the target of translocation t(15;19) that accounts for the highly aggressive NUT midline carcinoma (NMC). We discovered that t(15;19) NMC cells display the ability to grow into stem cell-like spheres and express an exceptionally high level of the stem cell marker, SOX2. The BRD4-NUT fusion oncogene resulting from t(15;19) translocation is required for the abnormal activation of SOX2, which drives the stem cell-like proliferation and cellular transformation in NMC cells. SOX2 knockdown phenocopies the effects of BRD4-NUT inhibition, whereas ectopic SOX2 expression rescues the phenotype. The BRD4-NUT-induced abnormal SOX2 activation was observed in multiple NMC cell lines as well as in NMC primary tumors. We further demonstrate that BRD4-NUT oncoprotein recruits p300 to stimulate transcription activation and that inhibition of p300 represses SOX2 transcription in NMC cells. These studies identify this stem cell marker as a novel BRD4-NUT target that supports the highly aggressive transforming activity of t(15;19) carcinomas. Our study provides new mechanistic insights for understanding how alteration of BRD4 function by BRD4-NUT oncogene leads to the highly malignant NMC carcinoma. Because abnormal stem cell self-renewal is frequently observed during tumor formation and metastasis, the aberrant stem cell-like proliferation associated with BRD4 dysregulation observed in NMC carcinoma may have implications for studying the oncogenic mechanism of other BRD4-associated tumors.


Epigenetics | 2013

Initial characterization of histone H3 serine 10 O-acetylation

Laura-Mae P Britton; Alyshia Newhart; Natarajan V. Bhanu; Rupa Sridharan; Michelle Gonzales-Cope; Kathrin Plath; Susan M. Janicki; Benjamin A. Garcia

In eukaryotic organisms, histone posttranslational modifications (PTMs) are indispensable for their role in maintaining cellular physiology, often through their mediation of chromatin-related processes such as transcription. Targeted investigations of this ever expanding network of chemical moieties continue to reveal genetic, biochemical, and cellular nuances of this complex landscape. In this study, we present our findings on a novel class of histone PTMs: Serine, Threonine, and Tyrosine O-acetylation. We have combined highly sensitive nano-LC-MS/MS experiments and immunodetection assays to identify and validate these unique marks found only on histone H3. Mass spectrometry experiments have determined that several of these O-acetylation marks are conserved in many species, ranging from yeast to human. Additionally, our investigations reveal that histone H3 serine 10 acetylation (H3S10ac) is potentially linked to cell cycle progression and cellular pluripotency. Here, we provide a glimpse into the functional implications of this H3-specific histone mark, which may be of high value for further studies of chromatin.


Cell Reports | 2014

HSV-1 Remodels Host Telomeres To Facilitate Viral Replication

Zhong Deng; Eui Tae Kim; Olga Vladimirova; Jayaraju Dheekollu; Zhuo Wang; Alyshia Newhart; Dongmei Liu; Jaclyn L. Myers; Scott E. Hensley; Jennifer F. Moffat; Susan M. Janicki; Nigel W. Fraser; David M. Knipe; Matthew D. Weitzman; Paul M. Lieberman

Telomeres protect the ends of cellular chromosomes. We show here that infection with herpes simplex virus 1 (HSV-1) results in chromosomal structural aberrations at telomeres and the accumulation of telomere dysfunction-induced DNA damage foci (TIFs). At the molecular level, HSV-1 induces transcription of telomere repeat-containing RNA (TERRA), followed by the proteolytic degradation of the telomere protein TPP1 and loss of the telomere repeat DNA signal. The HSV-1-encoded E3 ubiquitin ligase ICP0 is required for TERRA transcription and facilitates TPP1 degradation. Small hairpin RNA (shRNA) depletion of TPP1 increases viral replication, indicating that TPP1 inhibits viral replication. Viral replication protein ICP8 forms foci that coincide with telomeric proteins, and ICP8-null virus failed to degrade telomere DNA signal. These findings suggest that HSV-1 reorganizes telomeres to form ICP8-associated prereplication foci and to promote viral genomic replication.


Molecular Biology of the Cell | 2016

RNase P protein subunit Rpp29 represses histone H3.3 nucleosome deposition

Alyshia Newhart; Sara Lawrence Powers; Prashanth Krishna Shastrula; Isabel Sierra; Lucy M. Joo; James Hayden; Andrew R. Cohen; Susan M. Janicki

RNase P protein subunits Rpp29, POP1, and Rpp21 interact with histone H3.3 upstream of nucleosome deposition, suggesting that a variant of this enzyme regulates H3.3 function. Rpp29 knockdown increases H3.3 chromatin incorporation, suggesting that it represses H3.3 nucleosome deposition, which has important implications for epigenetic regulation.

Collaboration


Dive into the Susan M. Janicki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tian Yang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge