Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan M. Reutzel-Edens is active.

Publication


Featured researches published by Susan M. Reutzel-Edens.


Advanced Drug Delivery Reviews | 2001

Characterization of the solid state: quantitative issues

Gregory A. Stephenson; Robert A. Forbes; Susan M. Reutzel-Edens

Quantitative analysis of solid state composition is often used to ensure the safety and efficacy of drug substances or to establish and validate the control of the pharmaceutical production process. There are a number of common techniques that can be applied to quantify the phase composition and numerous different methods for each technique. Each quantitative option presents its own issues in ensuring accuracy and precision of the solid state method. The following article describes many of the common techniques that are used for quantitative phase analysis and many of the considerations that are necessary for the development of such methods.


Chemical Society Reviews | 2015

Facts and fictions about polymorphism

Aurora J. Cruz-Cabeza; Susan M. Reutzel-Edens; Joel Bernstein

We present new facts about polymorphism based on (i) crystallographic data from the Cambridge Structural Database (CSD, a database built over 50 years of community effort), (ii) 229 solid form screens conducted at Hoffmann-La Roche and Eli Lilly and Company over the course of 8+ and 15+ years respectively and (iii) a dataset of 446 polymorphic crystals with energies and properties computed with modern DFT-d methods. We found that molecular flexibility or size has no correlation with the ability of a compound to be polymorphic. Chiral molecules, however, were found to be less prone to polymorphism than their achiral counterparts and compounds able to hydrogen bond exhibit only a slightly higher propensity to polymorphism than those which do not. Whilst the energy difference between polymorphs is usually less than 1 kcal mol(-1), conformational polymorphs are capable of differing by larger values (up to 2.5 kcal mol(-1) in our dataset). As overall statistics, we found that one in three compounds in the CSD are polymorphic whilst at least one in two compounds from the Roche and Lilly set display polymorphism with a higher estimate of up to three in four when compounds are screened intensively. Whilst the statistics provide some guidance of expectations, each compound constitutes a new challenge and prediction and realization of targeted polymorphism still remains a holy grail of materials sciences.


Journal of Medicinal Chemistry | 2009

Synthesis, Crystallization, and Biological Evaluation of an Orally Active Prodrug of Gemcitabine

David M. Bender; Jingqi Bao; Anne H. Dantzig; William D. Diseroad; Kevin L. Law; Nicholas A. Magnus; Jeffrey A. Peterson; Everett J. Perkins; Yangwei J. Pu; Susan M. Reutzel-Edens; David Michael Remick; James J. Starling; Gregory A. Stephenson; Radhe K. Vaid; Deyi Zhang; James R. McCarthy

The design, synthesis, and biological characterization of an orally active prodrug (3) of gemcitabine are described. Additionally, the identification of a novel co-crystal solid form of the compound is presented. Valproate amide 3 is orally bioavailable and releases gemcitabine into the systemic circulation after passing through the intestinal mucosa. The compound has entered clinical trials and is being evaluated as a potential new anticancer agent.


Molecular Pharmaceutics | 2015

Navigating the Waters of Unconventional Crystalline Hydrates

Doris E. Braun; Lien H. Koztecki; Jennifer A. McMahon; Sarah L. Price; Susan M. Reutzel-Edens

Elucidating the crystal structures, transformations, and thermodynamics of the two zwitterionic hydrates (Hy2 and HyA) of 3-(4-dibenzo[b,f][1,4]oxepin-11-yl-piperazin-1-yl)-2,2-dimethylpropanoic acid (DB7) rationalizes the complex interplay of temperature, water activity, and pH on the solid form stability and transformation pathways to three neutral anhydrate polymorphs (Forms I, II°, and III). HyA contains 1.29 to 1.95 molecules of water per DB7 zwitterion (DB7z). Removal of the essential water stabilizing HyA causes it to collapse to an amorphous phase, frequently concomitantly nucleating the stable anhydrate Forms I and II°. Hy2 is a stoichiometric dihydrate and the only known precursor to Form III, a high energy disordered anhydrate, with the level of disorder depending on the drying conditions. X-ray crystallography, solid state NMR, and H/D exchange experiments on highly crystalline phase pure samples obtained by exquisite control over crystallization, filtration, and drying conditions, along with computational modeling, provided a molecular level understanding of this system. The slow rates of many transformations and sensitivity of equilibria to exact conditions, arising from its varying static and dynamic disorder and water mobility in different phases, meant that characterizing DB7 hydration in terms of simplified hydrate classifications was inappropriate for developing this pharmaceutical.


Drug Discovery Today | 2016

The potential of computed crystal energy landscapes to aid solid-form development

Sarah L. Price; Susan M. Reutzel-Edens

Solid-form screening to identify all solid forms of an active pharmaceutical ingredient (API) has become increasingly important in ensuring the quality by design of pharmaceutical products and their manufacturing processes. However, despite considerable enlargement of the range of techniques that have been shown capable of producing novel solid forms, it is possible that practically important forms might not be found in the short timescales currently allowed for solid-form screening. Here, we report on the state-of-the-art use of computed crystal energy landscapes to complement pharmaceutical solid-form screening. We illustrate how crystal energy landscapes can help establish molecular-level understanding of the crystallization behavior of APIs and enhance the ability of solid-form screening to facilitate pharmaceutical development.


Journal of Pharmaceutical Sciences | 2018

Coamorphous Active Pharmaceutical Ingredient–Small Molecule Mixtures: Considerations in the Choice of Coformers for Enhancing Dissolution and Oral Bioavailability

Ann W. Newman; Susan M. Reutzel-Edens; George Zografi

In the recent years, coamorphous systems, containing an active pharmaceutical ingredient (API) and a small molecule coformer have appeared as alternatives to the use of either amorphous solid dispersions containing polymer or cocrystals of API and small molecule coformers, to improve the dissolution and oral bioavailability of poorly soluble crystalline API. This Commentary article considers the relative properties of amorphous solid dispersions and coamorphous systems in terms of methods of preparation; miscibility; glass transition temperature; physical stability; hygroscopicity; and aqueous dissolution. It also considers important questions concerning the fundamental criteria to be used for the proper selection of a small molecule coformer regarding its ability to form either coamorphous or cocrystal systems. Finally, we consider various aspects of product development that are specifically associated with the formulation of commercial coamorphous systems as solid oral dosage forms. These include coformer selection; screening; methods of preparation; preformulation; physical stability; bioavailability; and final formulation. Through such an analysis of coamorphous API-small molecule coformer systems, against the more widely studied API-polymer dispersions and cocrystals, it is believed that the strengths and weaknesses of coamorphous systems can be better understood, leading to more efficient formulation and manufacture of such systems for enhancing oral bioavailability.


Crystal Growth & Design | 2017

Unraveling Complexity in the Solid Form Screening of a Pharmaceutical Salt: Why so Many Forms? Why so Few?

Doris E. Braun; Sreenivas R. Lingireddy; Mark D. Beidelschies; Rui Guo; Peter Müller; Sarah L. Price; Susan M. Reutzel-Edens

The solid form landscape of 5-HT2a antagonist 3-(4-(benzo[d]isoxazole-3-yl)piperazin-1-yl)-2,2-dimethylpropanoic acid hydrochloride (B5HCl) proved difficult to establish. Many crystalline materials were produced by solid form screening, but few forms readily grew high quality crystals to afford a clear picture or understanding of the solid form landscape. Careful control of crystallization conditions, a range of experimental methods, computational modeling of solvate structures, and crystal structure prediction were required to see potential arrangements of the salt in its crystal forms. Structural diversity in the solid form landscape of B5HCl was apparent in the layer structures for the anhydrate polymorphs (Forms I and II), dihydrate and a family of solvates with alcohols. The alcohol solvates, which provided a distinct packing from the neat forms and the dihydrate, form layers with conserved hydrogen bonding between B5HCl and the solvent, as well as stacking of the aromatic rings. The ability of the alcohol hydrocarbon moieties to efficiently pack between the layers accounted for the difficulty in growing some solvate crystals and the inability of other solvates to crystallize altogether. Through a combination of experiment and computation, the crystallization problems, form stability, and desolvation pathways of B5HCl have been rationalized at a molecular level.


CrystEngComm | 2018

A random forest model for predicting crystal packing of olanzapine solvates

Rajni M. Bhardwaj; Susan M. Reutzel-Edens; Blair F. Johnston; Alastair J. Florence

A random forest model obtained from calculated physicochemical properties of solvents and observed crystallised structures of olanzapine has for the first time enabled the prediction of different types of 3-dimensional crystal packings of olanzapine solvates. A novel olanzapine solvate was obtained by targeted crystallization from the solvent identified by the random forest classification model. The model identified van der Waals volume, number of covalent bonds and polarisability of the solvent molecules as key contributors to the 3-D crystal packing type of the solvate.


Molecular Pharmaceutics | 2017

Absorptive Dissolution Testing of Supersaturating Systems: Impact of Absorptive Sink Conditions on Solution Phase Behavior and Mass Transport

Siddhi S. Hate; Susan M. Reutzel-Edens; Lynne S. Taylor

One of the most commonly used formulation development tools is dissolution testing. However, for solubility enhancing formulations, a simple closed compartment conventional dissolution apparatus operating under sink conditions often fails to predict oral bioavailability and differentiate between formulations. Hence, increasing attention is being paid to combined dissolution-absorption testing. The currently available mass transport apparatuses, however, have certain limitations, the most important being the small membrane surface area, which results in slow mass transfer. In this study, a novel high surface area, flow-through absorptive dissolution testing apparatus was developed and tested on a weakly basic model drug, nevirapine. Following optimization of the experimental parameters, the mass transfer attained for a nevirapine solution was 30 times higher in 60 min as compared to a side-by-side diffusion cell. To further evaluate the system, nevirapine powder and commercial tablets were first dissolved at an acidic pH, followed by pH increase, creating a supersaturated solution. Detailed information related to the extent of supersaturation achieved in crystallizing and noncrystallizing systems could be obtained from the combined dissolution-mass transport measurements. Differences in donor cell compartment concentration-time profiles were noted for absorptive versus closed compartment conditions. It is anticipated that this approach could be a promising tool to identify solubility enabling formulations that perform optimally in vivo.


Faraday Discussions | 2018

Structure searching methods: general discussion

Matthew Addicoat; Claire S. Adjiman; Mihails Arhangelskis; Gregory J. O. Beran; Jan Gerit Brandenburg; Doris E. Braun; Virginia Burger; Asbjoern Burow; Christopher Collins; Andrew I. Cooper; Graeme M. Day; Volker L. Deringer; Matthew S. Dyer; Alan Hare; Kim E. Jelfs; Julian Keupp; Stefanos Konstantinopoulos; Yi Li; Yanming Ma; Noa Marom; David McKay; Caroline Mellot-Draznieks; Sharmarke Mohamed; Marcus A. Neumann; Sten Nilsson Lill; Jonas Nyman; Artem R. Oganov; Sarah L. Price; Susan M. Reutzel-Edens; Michael T. Ruggiero

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Structure searching methods: general discussion Matthew Addicoat, Claire Adjiman, Mihails Arhangelskis, Gregory Beran, Gerit Brandenburg, Doris Braun, Virginia Burger, Asbjoern Burow, Chris Collins, Andrew Cooper, et al.

Collaboration


Dive into the Susan M. Reutzel-Edens's collaboration.

Top Co-Authors

Avatar

Sarah L. Price

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge