Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan Marie Westaway is active.

Publication


Featured researches published by Susan Marie Westaway.


Neurogastroenterology and Motility | 2009

GSK962040: a small molecule, selective motilin receptor agonist, effective as a stimulant of human and rabbit gastrointestinal motility.

Gareth J. Sanger; Susan Marie Westaway; A A Barnes; David Timothy Macpherson; Alison Muir; Emma M. Jarvie; V N Bolton; Selim Cellek; Erik Näslund; Per M. Hellström; R A Borman; W P Unsworth; Kim L. Matthews; K. Lee

Abstract  There is an urgent clinical need for a safe, efficacious stimulant of gastric emptying; current therapies include erythromycin (an antibiotic with additional properties which preclude chronic use) and metoclopramide (a 5‐hydroxytryptamine type 4 receptor agonist and an antagonist at brain D2 receptors, associated with movement disorders). To move away from the complex motilide structure of erythromycin, a small molecule motilin receptor agonist, GSK962040, was identified and characterized. The compound was evaluated using recombinant human receptors, rabbit and human isolated stomach preparations known to respond to motilin and in vivo, by measuring its ability to increase defecation in conscious rabbits. At the human motilin receptor, the pEC50 (the negative logarithm to base 10 of the EC50 value, the concentration of agonist that produces 50% of the maximal response) values for GSK962040 and erythromycin as agonists were, respectively, 7.9 and 7.3; GSK962040 had no significant activity at a range of other receptors (including ghrelin), ion channels and enzymes. In rabbit gastric antrum, GSK962040 300 nmol L−1–10 μmol L−1 caused a prolonged facilitation of the amplitude of cholinergically mediated contractions, to a maximum of 248 ± 47% at 3 μmol L−1. In human‐isolated stomach, GSK962040 10 μmol L−1, erythromycin 10 μmol L−1 and [Nle13]‐motilin 100 nmol L−1, each caused muscle contraction of similar amplitude. In conscious rabbits, intravenous doses of 5 mg kg−1 GSK962040 or 10 mg kg−1 erythromycin significantly increased faecal output over a 2‐h period. Together, these data show that GSK962040, a non‐motilide structure, selectively activates the motilin receptor. Simplification of the structural requirements to activate this receptor greatly facilitates the design of potentially new medicines for gastroparesis.


Bioorganic & Medicinal Chemistry Letters | 2008

Design and synthesis of 6-phenylnicotinamide derivatives as antagonists of TRPV1

Susan Marie Westaway; Mervyn Thompson; Harshad Kantilal Rami; Geoffrey Stemp; Leontine S. Trouw; Darren Jason Mitchell; Jon T. Seal; Stephen J. Medhurst; Sarah C. Lappin; James Biggs; James Wright; Sandra Arpino; Jeffrey C. Jerman; Jennifer E. Cryan; Vicky Holland; Kim Winborn; Tanya Coleman; Alexander J. Stevens; John B. Davis; Martin J. Gunthorpe

6-Phenylnicotinamide (2) was previously identified as a potent TRPV1 antagonist with activity in an in vivo model of inflammatory pain. Optimization of this lead through modification of both the biaryl and heteroaryl components has resulted in the discovery of 6-(4-fluorophenyl)-2-methyl-N-(2-methylbenzothiazol-5-yl)nicotinamide (32; SB-782443) which possesses an excellent overall profile and has been progressed into pre-clinical development.


Journal of Medicinal Chemistry | 2016

8-Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors.

Vassilios Bavetsias; Rachel M. Lanigan; Gian Filippo Ruda; Butrus Atrash; Mark McLaughlin; Anthony Tumber; N. Yi Mok; Yann-Vaï Le Bihan; Sally Dempster; Katherine J. Boxall; F. Jeganathan; Stephanie B. Hatch; P. Savitsky; S. Velupillai; T. Krojer; Katherine S. England; Jimmy Sejberg; Ching Thai; Adam Donovan; Akos Pal; Giuseppe Scozzafava; James M. Bennett; Akane Kawamura; C. Johansson; A. Szykowska; C. Gileadi; N. Burgess-Brown; Frank von Delft; U. Oppermann; Zoë S. Walters

We report the discovery of N-substituted 4-(pyridin-2-yl)thiazole-2-amine derivatives and their subsequent optimization, guided by structure-based design, to give 8-(1H-pyrazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-ones, a series of potent JmjC histone N-methyl lysine demethylase (KDM) inhibitors which bind to Fe(II) in the active site. Substitution from C4 of the pyrazole moiety allows access to the histone peptide substrate binding site; incorporation of a conformationally constrained 4-phenylpiperidine linker gives derivatives such as 54j and 54k which demonstrate equipotent activity versus the KDM4 (JMJD2) and KDM5 (JARID1) subfamily demethylases, selectivity over representative exemplars of the KDM2, KDM3, and KDM6 subfamilies, cellular permeability in the Caco-2 assay, and, for 54k, inhibition of H3K9Me3 and H3K4Me3 demethylation in a cell-based assay.


Journal of Medicinal Chemistry | 2016

Cell Penetrant Inhibitors of the KDM4 and KDM5 Families of Histone Lysine Demethylases. 2. Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives.

Susan Marie Westaway; Alex G.S. Preston; Michael David Barker; Fiona Brown; Jack A. Brown; Matthew Campbell; Chun-wa Chung; Gerard Drewes; Robert Eagle; Neil Stuart Garton; Laurie J. Gordon; Carl Haslam; Thomas G. Hayhow; Philip G. Humphreys; Gerard Joberty; Roy Katso; Laurens Kruidenier; Melanie Leveridge; Michelle Pemberton; Inma Rioja; Gail A. Seal; Tracy Jane Shipley; Onkar M. P. Singh; Colin J. Suckling; Joanna Taylor; Pamela Thomas; David M. Wilson; Kevin Lee; Rab K. Prinjha

Following the discovery of cell penetrant pyridine-4-carboxylate inhibitors of the KDM4 (JMJD2) and KDM5 (JARID1) families of histone lysine demethylases (e.g., 1), further optimization led to the identification of non-carboxylate inhibitors derived from pyrido[3,4-d]pyrimidin-4(3H)-one. A number of exemplars such as compound 41 possess interesting activity profiles in KDM4C and KDM5C biochemical and target-specific, cellular mechanistic assays.


Journal of Medicinal Chemistry | 2009

Discovery of N-(3-Fluorophenyl)-1-[(4-([(3S)-3-methyl-1-piperazinyl]methyl)phenyl)acetyl]-4-piperidinamine (GSK962040), the First Small Molecule Motilin Receptor Agonist Clinical Candidate

Susan Marie Westaway; Samantha Louisa Brown; Stephen Christopher Martin Fell; Christopher Norbert Johnson; David Timothy Macpherson; Darren Jason Mitchell; James Myatt; Steven James Stanway; Jon T. Seal; Geoffrey Stemp; Mervyn Thompson; Kirk Lawless; Fiona McKay; Alison Muir; Jonathan M. Barford; Chermaine Cluff; Sadhia R. Mahmood; Kim L. Matthews; Shiyam Mohamed; Beverley Smith; Alexander J. Stevens; Victoria J. Bolton; Emma M. Jarvie; Gareth J. Sanger

N-(3-fluorophenyl)-1-[(4-([(3S)-3-methyl-1-piperazinyl]methyl)phenyl)acetyl]-4-piperidinamine 12 (GSK962040) is a novel small molecule motilin receptor agonist. It possesses excellent activity at the recombinant human motilin receptor and also at the native rabbit motilin receptor where its agonist activity results in potentiation of the amplitude of neuronal-mediated contractions of isolated gastric antrum tissue. Compound 12 also possesses highly promising pharmacokinetic profiles in both rat and dog, and these results, in combination with further profiling in human native tissue and an in vivo model of gastrointestinal transit in the rabbit, have led to its selection as a candidate for further development.


Journal of Medicinal Chemistry | 2016

Cell Penetrant Inhibitors of the KDM4 and KDM5 Families of Histone Lysine Demethylases. 1. 3-Amino-4-pyridine Carboxylate Derivatives

Susan Marie Westaway; Alex G.S. Preston; Michael David Barker; Fiona Brown; Jack A. Brown; Matthew Campbell; Chun-wa Chung; Hawa Diallo; Clement Douault; Gerard Drewes; Robert Eagle; Laurie J. Gordon; Carl Haslam; Thomas G. Hayhow; Philip G. Humphreys; Gerard Joberty; Roy Katso; Laurens Kruidenier; Melanie Leveridge; John Liddle; Julie Mosley; Marcel Muelbaier; Rebecca Randle; Inma Rioja; Anne Rueger; Gail A. Seal; Robert J. Sheppard; Onkar M. P. Singh; Joanna Taylor; Pamela J. Thomas

Optimization of KDM6B (JMJD3) HTS hit 12 led to the identification of 3-((furan-2-ylmethyl)amino)pyridine-4-carboxylic acid 34 and 3-(((3-methylthiophen-2-yl)methyl)amino)pyridine-4-carboxylic acid 39 that are inhibitors of the KDM4 (JMJD2) family of histone lysine demethylases. Compounds 34 and 39 possess activity, IC50 ≤ 100 nM, in KDM4 family biochemical (RFMS) assays with ≥ 50-fold selectivity against KDM6B and activity in a mechanistic KDM4C cell imaging assay (IC50 = 6-8 μM). Compounds 34 and 39 are also potent inhibitors of KDM5C (JARID1C) (RFMS IC50 = 100-125 nM).


Progress in Medicinal Chemistry | 2009

The Identification of and Rationale for Drugs Which Act at The Motilin Receptor

Susan Marie Westaway; Gareth J. Sanger

Publisher Summary The gastrointestinal (GI) tract is central to the process of eating. This organ plays a vital role in promoting the sensation of hunger, while helping other parts of the body to cope with the intake of nutrients ingested during a meal, and simultaneously providing defense against accidental ingestion of toxins (emesis, diarrhea) and playing a key role in immune protection. The hormones released during fasting tend to promote appetite and gastric motility, and exert different metabolic actions that include orexin, ghrelin and motilin. This chapter describes the advances in motilin biology that have important implications in terms of providing feedback to medicinal chemistry with translational value. The potential therapeutic utility of new drugs acting as agonists or as antagonists at the motilin receptor is then discussed, with emphasis on the better understood use of the motilin receptor agonists.


ACS Chemical Biology | 2016

Interrogating the Druggability of the 2-Oxoglutarate-Dependent Dioxygenase Target Class by Chemical Proteomics

Gerard Joberty; Markus Boesche; Jack A. Brown; Dirk Eberhard; Neil Stuart Garton; Philip G. Humphreys; Toby Mathieson; Marcel Muelbaier; Nigel Ramsden; Valerie Reader; Anne Rueger; Robert J. Sheppard; Susan Marie Westaway; Marcus Bantscheff; Kevin Lee; David Wilson; Rab K. Prinjha; Gerard Drewes

The 2-oxoglutarate-dependent dioxygenase target class comprises around 60 enzymes including several subfamilies with relevance to human disease, such as the prolyl hydroxylases and the Jumonji-type lysine demethylases. Current drug discovery approaches are largely based on small molecule inhibitors targeting the iron/2-oxoglutarate cofactor binding site. We have devised a chemoproteomics approach based on a combination of unselective active-site ligands tethered to beads, enabling affinity capturing of around 40 different dioxygenase enzymes from human cells. Mass-spectrometry-based quantification of bead-bound enzymes using a free-ligand competition-binding format enabled the comprehensive determination of affinities for the cosubstrate 2-oxoglutarate and for oncometabolites such as 2-hydroxyglutarate. We also profiled a set of representative drug-like inhibitor compounds. The results indicate that intracellular competition by endogenous cofactors and high active site similarity present substantial challenges for drug discovery for this target class.


Bioorganic & Medicinal Chemistry Letters | 2008

The discovery of biaryl carboxamides as novel small molecule agonists of the motilin receptor

Susan Marie Westaway; Samantha Louisa Brown; Elizabeth Conway; Tom D. Heightman; Christopher Norbert Johnson; Kate Lapsley; Gregor J. Macdonald; David Timothy Macpherson; Darren Jason Mitchell; James Myatt; Jon T. Seal; Steven James Stanway; Geoffrey Stemp; Mervyn Thompson; Paolo Celestini; Andrea Colombo; Alessandra Consonni; Stefania Gagliardi; Mauro Riccaboni; Silvano Ronzoni; Michael A. Briggs; Kim L. Matthews; Alexander J. Stevens; Victoria J. Bolton; Emma M. Jarvie; Sharon C. Stratton; Gareth J. Sanger

Optimisation of urea (5), identified from high throughput screening and subsequent array chemistry, has resulted in the identification of pyridine carboxamide (33) which is a potent motilin receptor agonist possessing favourable physicochemical and ADME profiles. Compound (33) has demonstrated prokinetic-like activity both in vitro and in vivo in the rabbit and therefore represents a promising novel small molecule motilin receptor agonist for further evaluation as a gastroprokinetic agent.


Bioorganic & Medicinal Chemistry Letters | 2008

Identification of small molecule agonists of the motilin receptor

Tom D. Heightman; Elizabeth Conway; David F. Corbett; Gregor J. Macdonald; Geoffrey Stemp; Susan Marie Westaway; Paolo Celestini; Stefania Gagliardi; Mauro Riccaboni; Silvano Ronzoni; Kalindi Vaidya; Sharon Butler; Fiona McKay; Alison Muir; Ben Powney; Kim Winborn; Alan Wise; Emma M. Jarvie; Gareth J. Sanger

High-throughput screening resulted in the identification of a series of novel motilin receptor agonists with relatively low molecular weights. The series originated from an array of biphenyl derivatives designed to target 7-transmembrane (7-TM) receptors. Further investigation of the structure-activity relationship within the series resulted in the identification of compound (22) as a potent and selective agonist at the motilin receptor.

Collaboration


Dive into the Susan Marie Westaway's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gareth J. Sanger

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge