Susan Mills
Teagasc
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susan Mills.
Gut microbes | 2013
Susan Mills; Fergus Shanahan; Catherine Stanton; Colin Hill; Aidan Coffey; R. Paul Ross
The human intestinal microbiota is one of the most densely populated ecosystems on Earth, containing up to 1013 bacteria/g and in some respects can be considered an organ itself given its role in human health. Bacteriophages (phages) are the most abundant replicating entities on the planet and thrive wherever their bacterial hosts exist. They undoubtedly influence the dominant microbial populations in many ecosystems including the human intestine. Within this setting, lysogeny appears to be the preferred life cycle, presumably due to nutrient limitations and lack of suitable hosts protected in biofilms, hence the predator/prey dynamic observed in many ecosystems is absent. On the other hand, free virulent phages in the gut are more common among sufferers of intestinal diseases and have been shown to increase with antibiotic usage. Many of these phages evolve from prophages of intestinal bacteria and emerge under conditions where their bacterial hosts encounter stress suggesting that prophages can significantly alter the microbial community composition. Based on these observations, we propose the “community shuffling” model which hypothesizes that prophage induction contributes to intestinal dysbiosis by altering the ratio of symbionts to pathobionts, enabling pathobiont niche reoccupation. The consequences of the increased phage load on the mammalian immune system are also addressed. While this is an area of intestinal biology which has received little attention, this review assembles evidence from the literature which supports the role of phages as one of the biological drivers behind the composition of the gut microbiota.
Annual Review of Food Science and Technology - (new in 2010) | 2011
Susan Mills; Catherine Stanton; Colin Hill; R.P. Ross
There is an increased desire for sophisticated foods, whereby consumers harbor higher expectations of health-promoting benefits above basic nutrition. Moreover, there is a move from the adulteration of foods with chemical preservatives toward biopreservation. Such expectations have led scientists to identify novel approaches to satisfy both demands, which utilize bacteriocin and peptide-based solutions. The best known examples of biopreservation involve bacteriocins. However, with the exception of nisin, bacteriocins have received limited use in the food industry. Peptides can be added to foods to improve consumer health. Some of the best known examples are angiotensin I-converting enzyme (ACE)-inhibitory peptides, which inhibit ACE, a key enzyme involved in blood pressure (BP) regulation. To be effective, these peptides must be bioavailable, but by their nature, peptides are degraded by digestion with proteolytic enzymes. This review critically discusses the use and potential of peptides and bacteriocins in food systems in terms of safety, quality, and improvement of human health.
Microbial Cell Factories | 2011
Susan Mills; Catherine Stanton; Gerald F. Fitzgerald; R. Paul Ross
Before a probiotic bacterium can even begin to fulfill its biological role, it must survive a battery of environmental stresses imposed during food processing and passage through the gastrointestinal tract (GIT). Food processing stresses include extremes in temperature, as well as osmotic, oxidative and food matrix stresses. Passage through the GIT is a hazardous journey for any bacteria with deleterious lows in pH encountered in the stomach to the detergent-like properties of bile in the duodenum. However, bacteria are equipped with an array of defense mechanisms to counteract intracellular damage or to enhance the robustness of the cell to withstand lethal external environments. Understanding these mechanisms in probiotic bacteria and indeed other bacterial groups has resulted in the development of a molecular toolbox to augment the technological and gastrointestinal performance of probiotics. This has been greatly aided by studies which examine the global cellular responses to stress highlighting distinct regulatory networks and which also identify novel mechanisms used by cells to cope with hazardous environments. This review highlights the latest studies which have exploited the bacterial stress response with a view to producing next-generation probiotic cultures and highlights the significance of studies which view the global bacterial stress response from an integrative systems biology perspective.
Annual Review of Food Science and Technology - (new in 2010) | 2010
B. Coffey; Susan Mills; Aidan Coffey; Olivia McAuliffe; R.P. Ross
Bacteriophage (phage) are bacterial viruses and are considered to be the most widely distributed and diverse natural biological entities. Soon after their discovery, bacteriophage were found to have antimicrobial properties that were exploited in many early anti-infection trials. However, the subsequent discovery of antibiotics led to a decline in the popularity of bacteriophage in much of the Western world, although work continued in the former Soviet Union and Eastern Europe. As a result of the emergence of antibiotic resistance in a number of bacterial pathogens, focus has been redirected back to bacteriophage and bacteriophage lysins as a means of pathogen control. Although bacteriophage have certain limitations, significant progress has been made toward their applications in food and has resulted in the U.S. Food and Drug Administration approving the use of a bacteriophage-based additive for the control of Listeria monocytogenes contamination. Furthermore, a number of animal studies have revealed the potential of bacteriophage for the control of various foodborne pathogens within the animal gastrointestinal tract and to subsequently decrease the likelihood of foodborne outbreaks. From a biopreservative perspective, phage have a number of key properties, including relative stability during storage, an ability to self-replicate, and a nontoxic nature. The purpose of this review is to highlight the recent developments in the use of phages and their lysins for biocontrol and to address their potential future applications.
Microbial Cell Factories | 2011
Susan Mills; L. Mariela Serrano; Carmel Griffin; Paula M. O'Connor; Chris Bruining; Colin Hill; R. Paul Ross; Wilco Meijer
Lactobacillus plantarum LMG P-26358 isolated from a soft French artisanal cheese produces a potent class IIa bacteriocin with 100% homology to plantaricin 423 and bacteriocidal activity against Listeria innocua and Listeria monocytogenes. The bacteriocin was found to be highly stable at temperatures as high as 100°C and pH ranges from 1-10. While this relatively narrow spectrum bacteriocin also exhibited antimicrobial activity against species of enterococci, it did not inhibit dairy starters including lactococci and lactobacilli when tested by well diffusion assay (WDA). In order to test the suitability of Lb. plantarum LMG P-26358 as an anti-listerial adjunct with nisin-producing lactococci, laboratory-scale cheeses were manufactured. Results indicated that combining Lb. plantarum LMG P-26358 (at 108 colony forming units (cfu)/ml) with a nisin producer is an effective strategy to eliminate the biological indicator strain, L. innocua. Moreover, industrial-scale cheeses also demonstrated that Lb. plantarum LMG P-26358 was much more effective than the nisin producer alone for protection against the indicator. MALDI-TOF mass spectrometry confirmed the presence of plantaricin 423 and nisin in the appropriate cheeses over an 18 week ripening period. A spray-dried fermentate of Lb. plantarum LMG P-26358 also demonstrated potent anti-listerial activity in vitro using L. innocua. Overall, the results suggest that Lb. plantarum LMG P-26358 is a suitable adjunct for use with nisin-producing cultures to improve the safety and quality of dairy products.
Journal of Applied Microbiology | 2010
Susan Mills; C. Griffin; Aidan Coffey; W.C. Meijer; B. Hafkamp; R.P. Ross
Aims: An efficient approach for generation of bacteriophage‐insensitive mutants (BIMs) of Streptococcus thermophilus starters was described in our laboratory [Mills et al. (2007) J Microbiol Methods70, 159–164]. The aim of this study was to analyse the phage resistance mechanism responsible for BIM formation.
Fems Microbiology Letters | 2009
Eileen F. O'Shea; Gillian E. Gardiner; Paula M. O'Connor; Susan Mills; R. Paul Ross; Colin Hill
Bacteriocin production may be a factor contributing to bacterial dominance within complex microbial populations and may therefore be a common trait within the gut microbiota. However, of 278 antimicrobial-producing culturable lactic acid bacteria (LAB) isolated from a range of mammalian intestinal sources in this study, characterization revealed just 23 distinct strains producing bacteriocin-like inhibitory substances and one Streptococcus hyointestinalis strain producing a potentially novel protease-insensitive antimicrobial. Three class II bacteriocins previously isolated from intestinal-derived LAB were identified as enterocin A and two salivaricin P-like bacteriocins. Moreover, this is the first report of intestinal-derived Streptococcus salivarius producing variants of the lantibiotic salivaricin A.
Journal of Applied Microbiology | 2002
Susan Mills; Aidan Coffey; L. O'Sullivan; D. Stokes; Colin Hill; Gerald F. Fitzgerald; R.P. Ross
Aims: Use of lacticin 481 to facilitate the conjugal transfer of the bacteriophage resistance plasmid pCBG104 to various starter cultures.
Letters in Applied Microbiology | 2001
Maeve Trotter; Susan Mills; R.P. Ross; Gerald F. Fitzgerald; Aidan Coffey
Aims: To facilitate the horizontal transfer and selection of phage‐resistance plasmids in industrial lactococci.
Gene | 2012
David Kelly; Orla O'Sullivan; Susan Mills; Olivia McAuliffe; R. Paul Ross; Horst Neve; Aidan Coffey
Pediococcus damnosus (P. damnosus) bacteriophage (phage) clP1 is a novel virulent phage isolated from a municipal sewage sample collected in Southern Ireland. This phage infects the beer spoilage strain P. damnosus P82 which was isolated from German breweries. Sequencing of the phage has revealed a linear double stranded DNA genome of 38,013 base pairs (bp) with an overall GC content of 47.6%. Fifty seven open reading frames (ORFs) were identified of which 30 showed homology to previously sequenced proteins, and as a consequence 20 of these were assigned predicted functions. The majority of genes displayed homology with genes from the Lactobacillus plantarum phage phiJL-1. All genes were located on the same coding strand and in the same orientation. Morphological characterisation placed phage clP1 as a member of the Siphoviridae family with an isometric head (59 nm diameter) and non-contractile tail (length 175 nm; diameter 10nm. Interestingly, the phage clP1 genome was found to share very limited identity with other phage genome sequences in the database, and was hence considered unique. This was highlighted by the genome organisation which differed slightly to the consensus pattern of genomic organisation usually found in Siphoviridae phages. With the genetic machinery present for a lytic lifecycle and the absence of potential endotoxin factors, this phage may have applications in the biocontrol of beer spoilage bacteria. To our knowledge, this study represents the first reported P. damnosus phage genome sequence.