Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan Moir is active.

Publication


Featured researches published by Susan Moir.


Journal of Experimental Medicine | 2008

Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals

Susan Moir; Jason Ho; Angela Malaspina; Wei-wei Wang; Angela C. DiPoto; Marie A. O'Shea; Gregg Roby; Shyam Kottilil; James Arthos; Michael A. Proschan; Tae-Wook Chun; Anthony S. Fauci

Human immunodeficiency virus (HIV) disease leads to impaired B cell and antibody responses through mechanisms that remain poorly defined. A unique memory B cell subpopulation (CD20hi/CD27lo/CD21lo) in human tonsillar tissues was recently defined by the expression of the inhibitory receptor Fc-receptor-like-4 (FCRL4). In this study, we describe a similar B cell subpopulation in the blood of HIV-viremic individuals. FCRL4 expression was increased on B cells of HIV-viremic compared with HIV-aviremic and HIV-negative individuals. It was enriched on B cells with a tissuelike memory phenotype (CD20hi/CD27−/CD21lo) when compared with B cells with a classical memory (CD27+) or naive (CD27−/CD21hi) B cell phenotype. Tissuelike memory B cells expressed patterns of homing and inhibitory receptors similar to those described for antigen-specific T cell exhaustion. The tissuelike memory B cells proliferated poorly in response to B cell stimuli, which is consistent with high-level expression of multiple inhibitory receptors. Immunoglobulin diversities and replication histories were lower in tissuelike, compared with classical, memory B cells, which is consistent with premature exhaustion. Strikingly, HIV-specific responses were enriched in these exhausted tissuelike memory B cells, whereas total immunoglobulin and influenza-specific responses were enriched in classical memory B cells. These data suggest that HIV-associated premature exhaustion of B cells may contribute to poor antibody responses against HIV in infected individuals.


Nature Reviews Immunology | 2009

B cells in HIV infection and disease.

Susan Moir; Anthony S. Fauci

In recent years, intense research efforts have been dedicated to elucidating the pathogenic mechanisms of HIV-associated disease progression. In addition to the progressive depletion and dysfunction of CD4+ T cells, HIV infection also leads to extensive defects in the humoral arm of the immune system. The lack of immune control of the virus in almost all infected individuals is a great impediment to the treatment of HIV-associated disease and to the development of a successful HIV vaccine. This Review focuses on advances in our understanding of the mechanisms of B-cell dysfunction in HIV-associated disease and discusses similarities with other diseases that are associated with B-cell dysfunction.


The Journal of Infectious Diseases | 2008

Persistence of HIV in Gut-Associated Lymphoid Tissue despite Long-Term Antiretroviral Therapy

Tae Wook Chun; David C. Nickle; Jesse S. Justement; Jennifer H. Meyers; Gregg Roby; Claire W. Hallahan; Shyam Kottilil; Susan Moir; JoAnn M. Mican; James I. Mullins; Douglas J. Ward; Joseph A. Kovacs; Peter J. Mannon; Anthony S. Fauci

Human immunodeficiency virus (HIV) persists in peripheral blood mononuclear cells despite sustained, undetectable plasma viremia resulting from long-term antiretroviral therapy. However, the source of persistent HIV in such infected individuals remains unclear. Given recent data suggesting high levels of viral replication and profound depletion of CD4(+) T cells in gut-associated lymphoid tissue (GALT) of animals infected with simian immunodeficiency virus and HIV-infected humans, we sought to determine the level of CD4(+) T cell depletion as well as the degree and extent of HIV persistence in the GALT of infected individuals who had been receiving effective antiviral therapy for prolonged periods of time. We demonstrate incomplete recoveries of CD4(+) T cells in the GALT of aviremic, HIV-infected individuals who had received up to 9.9 years of effective antiretroviral therapy. In addition, we demonstrate higher frequencies of HIV infection in GALT, compared with PBMCs, in these aviremic individuals and provide evidence for cross-infection between these 2 cellular compartments. Together, these data provide a possible mechanism for the maintenance of viral reservoirs revolving around the GALT of HIV-infected individuals despite long-term viral suppression and suggest that the GALT may play a major role in the persistence of HIV in such individuals.


Proceedings of the National Academy of Sciences of the United States of America | 2001

HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals

Susan Moir; Angela Malaspina; Kisani M. Ogwaro; Eileen T. Donoghue; Claire W. Hallahan; Linda A. Ehler; Shuying Liu; Joseph W. Adelsberger; Réjean Lapointe; Patrick Hwu; Michael W. Baseler; Jan M. Orenstein; Tae-Wook Chun; Jo Ann M. Mican; Anthony S. Fauci

A number of perturbations of B cells has been described in the setting of HIV infection; however, most remain poorly understood. To directly address the effect of HIV replication on B cell function, we investigated the capacity of B cells isolated from HIV-infected patients to respond to a variety of stimuli before and after reduction of viremia by effective antiretroviral therapy. B cells taken from patients with high levels of plasma viremia were defective in their proliferative responses to various stimuli. Viremia was also associated with the appearance of a subpopulation of B cells that expressed reduced levels of CD21. After fractionation into CD21high- and CD21low-expressing B cells, the CD21low fraction showed dramatically reduced proliferation in response to B cell stimuli and enhanced secretion of immunoglobulins when compared with the CD21high fraction. Electron microscopic analysis of each fraction revealed cells with plasmacytoid features in the CD21low B cell population but not in the CD21high fraction. These results indicate that HIV viremia induces the appearance of a subset of B cells whose function is impaired and which may be responsible for the hypergammaglobulinemia associated with HIV disease.


Blood | 2009

IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection.

Irini Sereti; Richard M. Dunham; John Spritzler; Evgenia Aga; Michael A. Proschan; Kathy Medvik; Catherine A. Battaglia; Alan Landay; Savita Pahwa; Margaret A. Fischl; David M. Asmuth; Allan R. Tenorio; John D. Altman; Lawrence Fox; Susan Moir; Angela Malaspina; Michel Morre; Renaud Buffet; Guido Silvestri; Michael M. Lederman

Interleukin 7 (IL-7) is a common gamma chain receptor cytokine implicated in thymopoiesis and in peripheral expansion and survival of T lymphocytes. The safety and activity of recombinant human IL-7 (rhIL-7) administration were therefore examined in HIV-infected persons. In this prospective randomized placebo-controlled study, a single subcutaneous dose of rhIL-7 was well tolerated with biologic activity demonstrable at 3 microg/kg and a maximum tolerated dose of 30 microg/kg. Injection site reactions and transient elevations of liver function tests were the most notable side effects. Transient increases in plasma HIV-RNA levels were observed in 6 of 11 IL-7-treated patients. Recombinant hIL-7 induced CD4 and CD8 T cells to enter cell cycle; cell-cycle entry was also confirmed in antigen-specific CD8 T cells. Administration of rhIL-7 led to transient down-regulation of the IL-7 receptor alpha chain (CD127) in both CD4(+) and CD8(+) T cells. Single-dose rhIL-7 increased the numbers of circulating CD4(+) and CD8(+) T cells, predominantly of central memory phenotype. The frequency of CD4(+) T cells with a regulatory T-cell phenotype (CD25(high) CD127(low)) did not change after rhIL-7 administration. Thus, rhIL-7 has a biologic and toxicity profile suggesting a potential for therapeutic trials in HIV infection and other settings of lymphopenia. This clinical trial has been registered at http://www.clinicaltrials.gov under NCT0099671.


Journal of Clinical Investigation | 1998

Natural killer cells from human immunodeficiency virus (HIV)-infected individuals are an important source of CC-chemokines and suppress HIV-1 entry and replication in vitro.

Alessandra Oliva; Audrey Kinter; Mauro Vaccarezza; Andrea Rubbert; Andrew T. Catanzaro; Susan Moir; JoAn Monaco; Linda A. Ehler; Stephanie B. Mizell; Robert Jackson; Yuexia Li; Joseph W. Romano; Anthony S. Fauci

Macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES (regulated on activation, normal T cell expressed and secreted), which are the natural ligands of the CC-chemokine receptor CCR5, inhibit replication of MT-2- negative strains of HIV-1 by interfering with the ability of these strains to utilize CCR5 as a coreceptor for entry in CD4(+) cells. The present study investigates the capacity of natural killer (NK) cells isolated from HIV-infected individuals to produce CC-chemokines and to suppress HIV replication in autologous, endogenously infected cells as well as to block entry of MT-2-negative HIV into the CD4(+) T cell line PM-1. NK cells freshly isolated from HIV-infected individuals had a high number of mRNA copies for MIP-1alpha and RANTES. NK cells produced significant amounts of RANTES, MIP-1alpha, and MIP-1beta constitutively, in response to stimulation with IL-2 alone and when they were performing their characteristic lytic activity (K562 killing). After CD16 cross-linking and stimulation with IL-2 or IL-15 NK cells produced CC-chemokines to levels comparable to those produced by anti-CD3-stimulated CD8(+) T cells. Furthermore, CD16 cross-linked NK cells suppressed (49-97%) viral replication in cocultures of autologous CD8/NK-depleted PBMC to a degree similar to that of PHA or anti-CD3-stimulated CD8(+) T cells. In 50% of patients tested, NK-mediated HIV suppression could be abrogated by neutralizing antibodies to MIP-1alpha, MIP-1beta and RANTES; in contrast, CD8(+) T cell-mediated suppression was not significantly overcome upon neutralization of CC-chemokines. Supernatants derived from cultures of CD16 cross-linked NK cells stimulated with IL-2 or IL-15 dramatically inhibited entry of a MT-2-negative strain of HIV, BaL, in the CD4(+)CCR5(+) PM-1 T cell line. These data suggest that activated NK cells may be an important source of CC-chemokines in vivo and may suppress HIV replication by CC-chemokine-mediated mechanisms in addition to classic NK-mediated lytic mechanisms.


Journal of Clinical Investigation | 2005

HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir

Tae Wook Chun; David C. Nickle; J. Shawn Justement; Danielle Large; Alice Semerjian; Marcel E. Curlin; M. Angeline O'Shea; Claire W. Hallahan; Marybeth Daucher; Douglas J. Ward; Susan Moir; James I. Mullins; Colin Kovacs; Anthony S. Fauci

The persistence of latently infected, resting CD4+ T cells is considered to be a major obstacle in preventing the eradication of HIV-1 even in patients who have received effective antiviral therapy for an average duration of 5 years. Although previous studies have suggested that the latent HIV reservoir in the resting CD4+ T cell compartment is virologically quiescent in the absence of activating stimuli, evidence has been mounting to suggest that low levels of ongoing viral replication persist and in turn, prolong the overall half-life of HIV in patients receiving antiviral therapy. Here, we demonstrate the persistence of replication-competent virus in CD4+ T cells in a cohort of patients who had received uninterrupted antiviral therapy for up to 9.1 years that rendered them consistently aviremic throughout that time. Surprisingly, substantially higher levels of HIV proviral DNA were found in activated CD4+ T cells when compared with resting CD4+ T cells in the majority of patients we studied. Phylogenetic analyses revealed evidence for cross infection between the resting and activated CD4+ T cell compartments, suggesting that ongoing reactivation of latently infected, resting CD4+ T cells and spread of virus by activated CD4+ T cells may occur in these patients. Such events may allow continual replenishment of the CD4+ T cell reservoir and resetting of the half-life of the latently infected, resting CD4+ T cells despite prolonged periods of aviremia.


Journal of Immunology | 2009

Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area.

Greta E. Weiss; Peter D. Crompton; Shanping Li; Laura A. Walsh; Susan Moir; Boubacar Traore; Kassoum Kayentao; Aissata Ongoiba; Ogobara K. Doumbo; Susan K. Pierce

Epidemiological observations in malaria endemic areas have long suggested a deficiency in the generation and maintenance of B cell memory to Plasmodium falciparum (Pf) in individuals chronically reinfected with the parasite. Recently, a functionally and phenotypically distinct population of FCRL4+ hyporesponsive memory B cells (MBCs) was reported to be expanded in HIV-infected individuals with high viral loads. In this study, we provide evidence that a phenotypically similar atypical MBC population is significantly expanded in Pf-exposed Malian adults and children as young as 2 years of age as compared with healthy U.S. adult controls. The number of these atypical MBCs was higher in children with chronic asymptomatic Pf infections compared with uninfected children, suggesting that the chronic presence of the parasite may drive expansion of these distinct MBCs. This is the first description of an atypical MBC phenotype associated with malaria. Understanding the origin and function of these MBCs could be important in informing the design of malaria vaccines.


Journal of Experimental Medicine | 2004

Decreased Survival of B Cells of HIV-viremic Patients Mediated by Altered Expression of Receptors of the TNF Superfamily

Susan Moir; Angela Malaspina; Oxana K. Pickeral; Eileen T. Donoghue; Joshua Vasquez; Natalie J. Miller; Surekha R. Krishnan; Marie A. Planta; John F. Turney; J. Shawn Justement; Shyamasundaran Kottilil; Mark Dybul; JoAnn M. Mican; Colin Kovacs; Tae-Wook Chun; Charles E. Birse; Anthony S. Fauci

Human immunodeficiency virus (HIV) infection leads to numerous perturbations of B cells through mechanisms that remain elusive. We performed DNA microarray, phenotypic, and functional analyses in an effort to elucidate mechanisms of B cell perturbation associated with ongoing HIV replication. 42 genes were up-regulated in B cells of HIV-viremic patients when compared with HIV-aviremic and HIV-negative patients, the majority of which were interferon (IFN)-stimulated or associated with terminal differentiation. Flow cytometry confirmed these increases and indicated that CD21low B cells, enhanced in HIV-viremic patients, were largely responsible for the changes. Increased expression of the tumor necrosis factor (TNF) superfamily (TNFSF) receptor CD95 correlated with increased susceptibility to CD95-mediated apoptosis of CD21low B cells, which, in turn, correlated with HIV plasma viremia. Increased expression of BCMA, a weak TNFSF receptor for B lymphocyte stimulator (BLyS), on CD21low B cells was associated with a concomitant reduction in the expression of the more potent BLyS receptor, BAFF-R, that resulted in reduced BLyS binding and BLyS-mediated survival. These findings demonstrate that altered expression of genes associated with IFN stimulation and terminal differentiation in B cells of HIV-viremic patients lead to an increased propensity to cell death, which may have substantial deleterious effects on B cell responsiveness to antigenic stimulation.


The New England Journal of Medicine | 2012

Cold Urticaria, Immunodeficiency, and Autoimmunity Related to PLCG2 Deletions

Michael J. Ombrello; Elaine F. Remmers; Guangping Sun; Alexandra F. Freeman; Shrimati Datta; Parizad Torabi-Parizi; Naeha Subramanian; Tom D. Bunney; Rhona W. Baxendale; Marta Martins; Neil Romberg; Hirsh D. Komarow; Ivona Aksentijevich; Hun Sik Kim; Jason Ho; Glenn Cruse; Mi-Yeon Jung; Alasdair M. Gilfillan; Dean D. Metcalfe; Celeste Nelson; Michelle O'Brien; Laura Wisch; Kelly D. Stone; Chhavi Gandhi; Alan A. Wanderer; Hane Lee; Stanley F. Nelson; Elizabeth T. Cirulli; David B. Goldstein; Eric O. Long

BACKGROUND Mendelian analysis of disorders of immune regulation can provide insight into molecular pathways associated with host defense and immune tolerance. METHODS We identified three families with a dominantly inherited complex of cold-induced urticaria, antibody deficiency, and susceptibility to infection and autoimmunity. Immunophenotyping methods included flow cytometry, analysis of serum immunoglobulins and autoantibodies, lymphocyte stimulation, and enzymatic assays. Genetic studies included linkage analysis, targeted Sanger sequencing, and next-generation whole-genome sequencing. RESULTS Cold urticaria occurred in all affected subjects. Other, variable manifestations included atopy, granulomatous rash, autoimmune thyroiditis, the presence of antinuclear antibodies, sinopulmonary infections, and common variable immunodeficiency. Levels of serum IgM and IgA and circulating natural killer cells and class-switched memory B cells were reduced. Linkage analysis showed a 7-Mb candidate interval on chromosome 16q in one family, overlapping by 3.5 Mb a disease-associated haplotype in a smaller family. This interval includes PLCG2, encoding phospholipase Cγ(2) (PLCγ(2)), a signaling molecule expressed in B cells, natural killer cells, and mast cells. Sequencing of complementary DNA revealed heterozygous transcripts lacking exon 19 in two families and lacking exons 20 through 22 in a third family. Genomic sequencing identified three distinct in-frame deletions that cosegregated with disease. These deletions, located within a region encoding an autoinhibitory domain, result in protein products with constitutive phospholipase activity. PLCG2-expressing cells had diminished cellular signaling at 37°C but enhanced signaling at subphysiologic temperatures. CONCLUSIONS Genomic deletions in PLCG2 cause gain of PLCγ(2) function, leading to signaling abnormalities in multiple leukocyte subsets and a phenotype encompassing both excessive and deficient immune function. (Funded by the National Institutes of Health Intramural Research Programs and others.).

Collaboration


Dive into the Susan Moir's collaboration.

Top Co-Authors

Avatar

Anthony S. Fauci

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tae-Wook Chun

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lela Kardava

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Angela Malaspina

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Claire W. Hallahan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

J. Shawn Justement

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jason Ho

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wei Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Clarisa M. Buckner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge