Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan Monro is active.

Publication


Featured researches published by Susan Monro.


Journal of the American Chemical Society | 2013

Exploitation of Long-Lived 3IL Excited States for Metal–Organic Photodynamic Therapy: Verification in a Metastatic Melanoma Model

Richard Lincoln; Lars Kohler; Susan Monro; Huimin Yin; Mat Stephenson; Ruifa Zong; Abdellatif Chouai; Christopher Dorsey; Robie Hennigar; Randolph P. Thummel; Sherri A. McFarland

Members of a family of Ru(II)-appended pyrenylethynylene dyads were synthesized, characterized according to their photophysical and photobiological properties, and evaluated for their collective potential as photosensitizers for metal-organic photodynamic therapy. The dyads in this series possess lowest-lying (3)IL-based excited states with lifetimes that can be tuned from 22 to 270 μs in fluid solution and from 44 to 3440 μs in glass at 77 K. To our knowledge, these excited-state lifetimes are the longest reported for Ru(II)-based dyads containing only one organic chromophore and lacking terminal diimine groups. These excited states proved to be extremely sensitive to trace amounts of oxygen, owing to their long lifetimes and very low radiative rates. Herein, we demonstrate that (3)IL states of this nature are potent photodynamic agents, exhibiting the largest photocytotoxicity indices reported to date with nanomolar light cytotoxicities at very short drug-to-light intervals. Importantly, these new agents are robust enough to maintain submicromolar PDT in pigmented metastatic melanoma cells, where the presence of melanin in combination with low oxygen tension is known to compromise PDT. This activity underscores the potential of metal-organic PDT as an alternate treatment strategy for challenging environments such as malignant melanoma.


Inorganic Chemistry | 2010

Photobiological Activity of Ru(II) Dyads Based on (Pyren-1-yl)ethynyl Derivatives of 1,10-Phenanthroline

Susan Monro; John A. Scott; Abdellatif Chouai; Richard Lincoln; Ruifa Zong; Randolph P. Thummel; Sherri A. McFarland

Several mononuclear Ru(II) dyads possessing 1,10-phenanthroline-appended pyrenylethynylene ligands were synthesized, characterized, and evaluated for their potential in photobiological applications such as photodynamic therapy (PDT). These complexes interact with DNA via intercalation and photocleave DNA in vitro at submicromolar concentrations when irradiated with visible light (lambda(irr) > or = 400 nm). Such properties are remarkably sensitive to the position of the ethynylpyrenyl substituent on the 1,10-phenanthroline ring, with 3-substitution showing the strongest binding under all conditions and causing the most deleterious DNA damage. Both dyads photocleave DNA under hypoxic conditions, and this photoactivity translates well to cytotoxicity and photocytotoxicity models using human leukemia cells, where the 5- and 3-substituted dyads show photocytotoxicity at 5-10 microM and 10-20 microM, respectively, with minimal, or essentially no, dark toxicity at these concentrations. This lack of dark cytotoxicity at concentrations where significant photoactivity is observed emphasizes that agents with strong intercalating units, previously thought to be too toxic for phototherapeutic applications, should not be excluded from the arsenal of potential photochemotherapeutic agents under investigation.


Photodiagnosis and Photodynamic Therapy | 2013

Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers

Yaxal Arenas; Susan Monro; Ge Shi; Arkady Mandel; Sherri A. McFarland; Lothar Lilge

BACKGROUND The introduction of new disinfection and sterilization methods, such as antimicrobial photodynamic therapy, is urgently needed for the healthcare industry, in particular to address the pervasive problem of antibiotic resistance. This study evaluated the efficacy and the mechanisms of photodynamic antimicrobial chemotherapy (PACT), also known as photodynamic inactivation (PDI) of microorganisms, induced by novel Ru(II)-based photosensitizers against Staphylococcus aureus and methicillin-resistant S. aureus strains. METHODS The photodynamic antibacterial effects of a new class of Ru(II)-based photosensitizers (TLD1411 and TLD1433) were evaluated against a strain of S. aureus (ATCC 25923) and a methicillin-resistant strain of S. aureus (MRSA, ATCC 33592). Bacterial samples were dosed with a range of photosensitizer concentrations (0.3-12 μM) and exposed to 530 nm light (90J cm(-2)) in normoxic conditions (ambient atmosphere) and in hypoxic conditions (0.5% O2). RESULTS Both photosensitizers exerted photodynamic inactivation (PDI) of the microorganisms in normoxia, and this activity was observed in the nanomolar regime. TLD1411 and TLD1433 maintained this PDI potency under hypoxic conditions, with TLD1433 becoming even more active in the low-oxygen environment. CONCLUSION The observation of activity in hypoxia suggests that there exists an oxygen-independent, Type I photoprocess for this new class of compounds in addition to the typical Type II pathway mediated by singlet oxygen. The intrinsic positive charge of the Ru(II) metal combined with the oxygen independent activity demonstrated by this class of photosensitizers presents a new strategy for eradicating both gram-positive and gram-negative bacteria regardless of oxygenation level.


Journal of Physical Chemistry A | 2014

Ru(II) dyads derived from 2-(1-pyrenyl)-1H-imidazo[4,5-f][1,10]phenanthroline: versatile photosensitizers for photodynamic applications.

Mat Stephenson; Christian Reichardt; Mitch Pinto; Maria Wächtler; Tariq Sainuddin; Ge Shi; Huimin Yin; Susan Monro; Eric Sampson; Benjamin Dietzek; Sherri A. McFarland

Combining the best attributes of organic photosensitizers with those of coordination complexes is an elegant way to achieve prolonged excited state lifetimes in Ru(II) dyads. Not only do their reduced radiative and nonradiative rates provide ample time for photosensitization of reactive oxygen species at low oxygen tension but they also harness the unique properties of (3)IL states that can act as discrete units or in concert with (3)MLCT states. The imidazo[4,5-f][1,10]phenanthroline framework provides a convenient tether for linking π-expansive ligands such as pyrene to a Ru(II) scaffold, and the stabilizing coligands can fine-tune the chemical and biological properties of these bichromophoric systems. The resulting dyads described in this study exhibited nanomolar light cytotoxicities against cancer cells with photocytotoxicity indices exceeding 400 for some coligands employed. This potency extended to bacteria, where concentrations as low as 10 nM destroyed 75% of a bacterial population. Notably, these dyads remained extremely active against biofilm with light photocytotoxicities against these more resistant bacterial populations in the 10-100 nM regime. The results from this study demonstrate the versatility of these highly potent photosensitizers in destroying both cancer and bacterial cells and expand the scope of compounds that utilize low-lying (3)IL states for photobiological applications.


Inorganic Chemistry | 2014

In vitro multiwavelength PDT with 3IL states: teaching old molecules new tricks.

Huimin Yin; Mat Stephenson; Jordan Gibson; Eric Sampson; Ge Shi; Tariq Sainuddin; Susan Monro; Sherri A. McFarland

The purpose of the present investigation was to ascertain whether (3)IL excited states with microsecond lifetimes are universally potent for photodynamic applications, and if these long-lived states are superior to their (3)MLCT counterparts as in vitro PDT agents. A family of blue-green absorbing, Ru(II)-based transition metal complexes derived from the π-expansive dppn ligand was prepared and characterized according to its photodynamic activity against HL-60 cells, and toward DNA in cell-free media. Complexes in this series that are characterized by low-energy and long-lived (3)IL excited states photocleaved DNA with blue, green, red, and near-IR light. This panchromatic photodynamic effect translated to in vitro multiwavelength photodynamic therapy (PDT) with red-light cytotoxicities as low as 1.5 μM (EC50) for the parent complex and 400 nM for its more lipophilic counterpart. This potency is similar to that achieved with Ru(II)-based dyads containing long-lived (3)IL excitons located on appended pyrenyl units, and appears to be a general property of sufficiently long-lived excited states. Moreover, the red PDT observed for certain members of this family was almost 5 times more potent than Photofrin with therapeutic indices 30 times greater. Related Ru(II) complexes having lowest-lying (3)MLCT states of much shorter duration (≤1 μs) did not yield DNA photodamage or in vitro PDT with red or near-IR light, nor did the corresponding Os(II) complex with a submicrosecond (3)IL excited state lifetime. Therefore, metal complexes that utilize highly photosensitizing (3)IL excited states, with suitably long lifetimes (≫ 1 μs), are well-poised to elicit PDT at wavelengths even where their molar extinction coefficients are very low (<100 M(-1) cm(-1)). Herein we demonstrate that such unexpected reactivity gives rise to very effective PDT in the typical therapeutic window (600-850 nm).


Journal of the American Chemical Society | 2015

Eight-membered ring-containing jadomycins: implications for non-enzymatic natural products biosynthesis.

Andrew W. Robertson; Camilo F. Martinez-Farina; Deborah A. Smithen; Huimin Yin; Susan Monro; Alison Thompson; Sherri A. McFarland; Raymond T. Syvitski; David L. Jakeman

Jadomycin Oct (1) was isolated from Streptomyces venezuelae ISP5230 and characterized as a structurally unique eight-membered l-ornithine ring-containing jadomycin. The structure was elucidated through the semisynthetic derivatization of starting material via chemoselective acylation of the l-ornithine α-amino group using activated succinimidyl esters. Incorporation of 5-aminovaleric acid led to jadomycin AVA, a second eight-membered ring-containing jadomycin. These natural products illustrate the structural diversity permissible from a non-enzymatic step within a biosynthetic pathway and exemplifies the potential for discovery of novel scaffolds.


Journal of Natural Products | 2011

Jadomycins Derived from the Assimilation and Incorporation of Norvaline and Norleucine

Stephanie N. Dupuis; Thomas Veinot; Susan Monro; Susan E. Douglas; Raymond T. Syvitski; Kerry B. Goralski; Sherri A. McFarland; David L. Jakeman

Streptomyces venezuelae ISP5230 is recognized for the production of chloramphenicol and the jadomycin family of natural products. The jadomycins are angucycline natural products containing a unique oxazolone ring incorporating an amino acid present in the minimal culture media. Substitution of different amino acids results in products of varying biological activity. Analysis of cultures of S. venezuelae ISP5230 incubated with l- and d-norvaline and l- and d-norleucine indicated that only the d-configured amino acids were incorporated into the natural products. Subsequently, jadomycin DNV and jadomycin DNL were isolated and characterized (titers 4 and 9 mg L(-1), respectively). The compounds were evaluated in the National Cancer Institute cell line cancer growth inhibition and cytotoxicity screens, for antimicrobial activity against selected Gram-positive and Gram-negative bacteria, and as DNA-cleavage agents in vitro.


Journal of Natural Products | 2015

Isolation and Synthetic Diversification of Jadomycin 4-Amino-l-phenylalanine.

Camilo F. Martinez-Farina; Andrew W. Robertson; Huimin Yin; Susan Monro; Sherri A. McFarland; Raymond T. Syvitski; David L. Jakeman

Streptomyces venezuelae ISP5230 was grown in the presence of phenylalanine analogues to observe whether they could be incorporated into novel jadomycin structures. It was found that the bacteria successfully produced jadomycins incorporating 4-aminophenylalanine enantiomers. Upon isolation and characterization of jadomycin 4-amino-l-phenylalanine (1), it was synthetically derivatized, using activated succinimidyl esters, to yield a small jadomycin amide library. These are the first examples of oxazolone-ring-containing jadomycins that have incorporated an amino functionality subsequently used for derivatization.


Bioorganic & Medicinal Chemistry | 2011

Copper-mediated nuclease activity of jadomycin B

Susan Monro; Krista M. Cottreau; Colin Spencer; Jason R. Wentzell; Cathy L. Graham; Charles N. Borissow; David L. Jakeman; Sherri A. McFarland

The natural product jadomycin B, isolated from Streptomyces venezeulae ISP5230, has been found to cleave DNA in the presence of Cu(II) ions without the requirement for an external reducing agent. The efficiency of DNA cleavage was probed using supercoiled plasmid DNA in buffered solution as a model environment. EC₅₀ and t(½) values for cleavage were 1.7 μM and 0.75 h, respectively, and varied ± 5% with the particular batch of plasmid and jadomycin employed. While UV-vis spectroscopy indicates that the cleavage event does not involve direct binding of jadomycin B to DNA, a stoichiometric Cu(II) preference for optimum cleavage suggests a weak binding interaction between jadomycin B and Cu(II) in the presence of DNA. The Cu(II)-mediated cleavage is greatly enhanced by UV light, which implicates the jadomycin B radical cation and Cu(I) as potential intermediates in DNA cleavage. Evidence in favor of this hypothesis was derived from a mechanistic assay which showed reduced cleavage as a function of added catalase and EDTA, scavengers of H₂O₂ and Cu(II), respectively. Thus, jadomycin B may serve as a source of electrons for Cu(II) reduction, producing Cu(I) which reacts with H₂O₂ to form hydroxyl radicals that cause DNA strand scission. In addition, scavengers of hydroxyl radicals and superoxide also display inhibitory effects, underscoring the ability of jadomycin B to produce a powerful arsenal of deleterious oxygen species when copper is present.


Journal of Physical Chemistry A | 2016

Influence of Protonation State on the Excited State Dynamics of a Photobiologically Active Ru(II) Dyad

Christian Reichardt; Tariq Sainuddin; Maria Wächtler; Susan Monro; Stephan Kupfer; Julien Guthmuller; Stefanie Gräfe; Sherri A. McFarland; Benjamin Dietzek

The influence of ligand protonation on the photophysics of a ruthenium (Ru) dyad bearing the 2-(1-pyrenyl)-1H-imidazo[4,5-f][1,10]-phenanthroline (ippy) ligand was investigated by time-resolved transient absorption spectroscopy. It was found that changes in the protonation state of the imidazole group led to changes in the electronic configuration of the lowest lying excited state. Formation of the fully deprotonated imidazole anion resulted in excited state signatures that were consistent with a low-lying intraligand (IL) triplet state. This assignment was supported by time-dependent density functional theory (TDDFT) calculations. IL triplet states have been suggested to be potent mediators of photodynamic effects. Thus, these results are of interest in the design of Ru metal complexes as photosensitizers (PSs) for photodynamic therapy (PDT).

Collaboration


Dive into the Susan Monro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin G. Cameron

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lothar Lilge

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Katsuya L. Colón

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Wenfang Sun

North Dakota State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge