Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan S. Black is active.

Publication


Featured researches published by Susan S. Black.


Science | 2008

The Structure of an Open Form of an E. coli Mechanosensitive Channel at 3.45 Å Resolution

Wenjian Wang; Susan S. Black; Michelle D. Edwards; Samantha Miller; Emma Morrison; Wendy Bartlett; Changjiang Dong; James H. Naismith; Ian R. Booth

How ion channels are gated to regulate ion flux in and out of cells is the subject of intense interest. The Escherichia coli mechanosensitive channel, MscS, opens to allow rapid ion efflux, relieving the turgor pressure that would otherwise destroy the cell. We present a 3.45 angstrom–resolution structure for the MscS channel in an open conformation. This structure has a pore diameter of ∼13 angstroms created by substantial rotational rearrangement of the three transmembrane helices. The structure suggests a molecular mechanism that underlies MscS gating and its decay of conductivity during prolonged activation. Support for this mechanism is provided by single-channel analysis of mutants with altered gating characteristics.


Nature Reviews Microbiology | 2007

Mechanosensitive channels in bacteria: signs of closure?

Ian R. Booth; Michelle D. Edwards; Susan S. Black; Ulrike Schumann; Samantha Miller

Bacterial mechanosensitive channels are activated by increases in tension in the lipid bilayer of the cytoplasmic membrane, where they transiently create large pores in a controlled manner. Mechanosensitive channel research has benefited from advances in electrophysiology, genomics and molecular genetics as well as from the application of biophysical techniques. Most recently, new analytical methods have been used to complement existing knowledge and generate insights into the molecular interactions that take place between mechanosensitive channel proteins and the surrounding membrane lipids. This article reviews the latest developments.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Conformational state of the MscS mechanosensitive channel in solution revealed by pulsed electron-electron double resonance (PELDOR) spectroscopy.

Christos Pliotas; Richard Ward; Emma Branigan; Akiko Rasmussen; Gregor Hagelueken; Hexian Huang; Susan S. Black; Ian R. Booth; Olav Schiemann; James H. Naismith

The heptameric mechanosensitive channel of small conductance (MscS) provides a critical function in Escherichia coli where it opens in response to increased bilayer tension. Three approaches have defined different closed and open structures of the channel, resulting in mutually incompatible models of gating. We have attached spin labels to cysteine mutants on key secondary structural elements specifically chosen to discriminate between the competing models. The resulting pulsed electron–electron double resonance (PELDOR) spectra matched predicted distance distributions for the open crystal structure of MscS. The fit for the predictions by structural models of MscS derived by other techniques was not convincing. The assignment of MscS as open in detergent by PELDOR was unexpected but is supported by two crystal structures of spin-labeled MscS. PELDOR is therefore shown to be a powerful experimental tool to interrogate the conformation of transmembrane regions of integral membrane proteins.


Channels | 2012

Characterization of three novel mechanosensitive channel activities in Escherichia coli

Michelle D. Edwards; Susan S. Black; Tim Rasmussen; Akiko Rasmussen; Neil R. Stokes; Terri-Leigh Stephen; Samantha Miller; Ian R. Booth

Mechanosensitive channels sense elevated membrane tension that arises from rapid water influx occurring when cells move from high to low osmolarity environments (hypoosmotic shock). These non-specific channels in the cytoplasmic membrane release osmotically-active solutes and ions. The two major mechanosensitive channels in Escherichia coli are MscL and MscS. Deletion of both proteins severely compromises survival of hypoosmotic shock. However, like many bacteria, E. coli cells possess other MscS-type genes (kefA, ybdG, ybiO, yjeP and ynaI). Two homologs, MscK (kefA) and YbdG, have been characterized as mechanosensitive channels that play minor roles in maintaining cell integrity. Additional channel openings are occasionally observed in patches derived from mutants lacking MscS, MscK and MscL. Due to their rare occurrence, little is known about these extra pressure-induced currents or their genetic origins. Here we complete the identification of the remaining E. coli mechanosensitive channels YnaI, YbiO and YjeP. The latter is the major component of the previously described MscM activity (~300 pS), while YnaI (~100 pS) and YbiO (~1000 pS) were previously unknown. Expression of native YbiO is NaCl-specific and RpoS-dependent. A Δ7 strain was created with all seven E. coli mechanosensitive channel genes deleted. High level expression of YnaI, YbiO or YjeP proteins from a multicopy plasmid in the Δ7 strain (MJFGH) leads to substantial protection against hypoosmotic shock. Purified homologs exhibit high molecular masses that are consistent with heptameric assemblies. This work reveals novel mechanosensitive channels and discusses the regulation of their expression in the context of possible additional functions.


PLOS ONE | 2011

Altered Antibiotic Transport in Ompc Mutants Isolated from a Series of Clinical Strains of Multi-Drug Resistant E. Coli.

Hubing Lou; Min Chen; Susan S. Black; Simon R. Bushell; Matteo Ceccarelli; Tivadar Mach; Konstantinos Beis; Alison S. Low; Victoria A. Bamford; Ian R. Booth; Hagan Bayley; James H. Naismith

Antibiotic-resistant bacteria, particularly Gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate). We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane.


Journal of the Royal Society Interface | 2013

Mechanosensitive channels and bacterial cell wall integrity: does life end with a bang or a whimper?

Marcel Reuter; Nicholas J. Hayward; Susan S. Black; Samantha Miller; David T. F. Dryden; Ian R. Booth

Mechanogated channels are fundamental components of bacterial cells that enable retention of physical integrity during extreme increases in cell turgor. Optical tweezers combined with microfluidics have been used to study the fate of individual Escherichia coli cells lacking such channels when subjected to a bursting stress caused by increased turgor. Fluorescence-activated cell sorting and electron microscopy complement these studies. These analyses show that lysis occurs with a high probability, but the precise path differs between individual cells. By monitoring the loss of cytoplasmic green fluorescent protein, we have determined that some cells release this protein but remain phase dark (granular) consistent with the retention of the majority of large proteins. By contrast, most cells suffer cataclysmic wall failure leading to loss of granularity but with the retention of DNA and overall cell shape (protein-depleted ghosts). The time span of these events induced by hypo-osmotic shock varies but is of the order of milliseconds. The data are interpreted in terms of the timing of mechanosensitive channel gating relative to osmotically induced water influx.


Methods in Enzymology | 2007

Physiological Analysis of Bacterial Mechanosensitive Channels

Ian R. Booth; Michelle D. Edwards; Susan S. Black; Ulrike Schumann; Wendy Bartlett; Tim Rasmussen; Akiko Rasmussen; Samantha Miller

Bacterial mechanosensitive (MS) channels play a significant role in protecting cells against hypoosmotic shock. Bacteria that have been diluted from high osmolarity medium into dilute solution are required to cope with sudden water influx associated with an osmotic imbalance equivalent to 10 to 14 atm. The cell wall is only poorly expansive and the cytoplasmic membrane even less so. Thus, swelling is not an option and the cell must rapidly eject solutes to diminish the osmotic gradient and thereby preserve structural integrity. This chapter describes cellular assays of MS channel function and their interpretation.


Molecular Microbiology | 2010

The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in Escherichia coli.

Ertan Ozyamak; Susan S. Black; Claire A. Walker; Morag J. MacLean; Wendy Bartlett; Samantha Miller; Ian R. Booth

Survival of exposure to methylglyoxal (MG) in Gram‐negative pathogens is largely dependent upon the operation of the glutathione‐dependent glyoxalase system, consisting of two enzymes, GlxI (gloA) and GlxII (gloB). In addition, the activation of the KefGB potassium efflux system is maintained closed by glutathione (GSH) and is activated by S‐lactoylGSH (SLG), the intermediate formed by GlxI and destroyed by GlxII. Escherichia coli mutants lacking GlxI are known to be extremely sensitive to MG. In this study we demonstrate that a ΔgloB mutant is as tolerant of MG as the parent, despite having the same degree of inhibition of MG detoxification as a ΔgloA strain. Increased expression of GlxII from a multicopy plasmid sensitizes E. coli to MG. Measurement of SLG pools, KefGB activity and cytoplasmic pH shows these parameters to be linked and to be very sensitive to changes in the activity of GlxI and GlxII. The SLG pool determines the activity of KefGB and the degree of acidification of the cytoplasm, which is a major determinant of the sensitivity to electrophiles. The data are discussed in terms of how cell fate is determined by the relative abundance of the enzymes and KefGB.


Biochemical Society Transactions | 2011

Sensing bilayer tension: bacterial mechanosensitive channels and their gating mechanisms.

Ian R. Booth; Tim Rasmussen; Michelle D. Edwards; Susan S. Black; Akiko Rasmussen; Wendy Bartlett; Samantha Miller

Mechanosensitive channels sense and respond to changes in bilayer tension. In many respects, this is a unique property: the changes in membrane tension gate the channel, leading to the transient formation of open non-selective pores. Pore diameter is also high for the bacterial channels studied, MscS and MscL. Consequently, in cells, gating has severe consequences for energetics and homoeostasis, since membrane depolarization and modification of cytoplasmic ionic composition is an immediate consequence. Protection against disruption of cellular integrity, which is the function of the major channels, provides a strong evolutionary rationale for possession of such disruptive channels. The elegant crystal structures for these channels has opened the way to detailed investigations that combine molecular genetics with electrophysiology and studies of cellular behaviour. In the present article, the focus is primarily on the structure of MscS, the small mechanosensitive channel. The description of the structure is accompanied by discussion of the major sites of channel-lipid interaction and reasoned, but limited, speculation on the potential mechanisms of tension sensing leading to gating.


International Journal of Osteoarchaeology | 1996

Occipitalization of the atlas with reference to its embryological development

Susan S. Black; Louise Scheuer

A skull is described from the St Brides collection in which the atlas is fused to the occiput. The mechanism of occipitalization or assimilation is described in the light of the embryological development of the upper axial skeleton.

Collaboration


Dive into the Susan S. Black's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge