Susan Stern
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susan Stern.
Injury-international Journal of The Care of The Injured | 2012
Kohsuke Teranishi; Anke H. Scultetus; Ashraful Haque; Susan Stern; Nora Philbin; Jennifer Rice; Todd Johnson; Charles Auker; Richard M. McCarron; Daniel Freilich; Francoise Arnaud
INTRODUCTION Unavailability of blood (and oxygen delivery) for pre-hospital resuscitation in haemorrhagic shock patients are major problems, supporting the importance for novel resuscitation strategies. In a combined polytrauma model of uncontrolled haemorrhage and traumatic brain injury (TBI) in swine, we investigated if pre-hospital administration of the haemoglobin based oxygen carrier HBOC-201 will improve tissue oxygenation and physiologic parameters compared to Lactated Ringers (LR) solution. MATERIALS AND METHODS Anaesthetised Yorkshire swine underwent fluid-percussion TBI and Grade III liver laceration. During a 30-min pre-hospital phase, the animals were resuscitated with a single infusion of HBOC-201, LR solution, or nothing (NON). Upon hospital arrival, the animals were given blood or normal saline as needed. Surviving animals were euthanised 6h post-injury. Cerebral blood flow was measured by microsphere injection, and pathology was assessed by gross observation and immunohistochemical analysis. RESULTS Mean TBI force (2.4±0.1atm) (means±standard error of the mean) and blood loss (22.5±1.7mL/kg) were similar between groups. Survival at the 6h endpoint was similar in all groups (∼50%). Cerebral perfusion pressure (CPP) and brain tissue oxygen tension were significantly greater in HBOC-201 as compared with LR animals (p<0.005). Mean arterial pressure (MAP) and mean pulmonary artery pressure (MPAP) were not significantly different amongst groups. Blood transfusion requirements were delayed in HBOC-201 animals. Animals treated with HBOC-201 or LR showed no immunohistopathological differences in glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP-2). Severity of subarachnoid and intraparenchymal haemorrhages were similar for HBOC and LR groups. CONCLUSION In this polytrauma swine model of uncontrolled haemorrhage and TBI with a 30-min delay to hospital arrival, pre-hospital resuscitation with one bolus of HBOC-201 indicated short term benefits in systemic and cerebrovascular physiological parameters. True clinical benefits of this strategy need to be confirmed on TBI and haemorrhagic shock patients.
Shock | 2013
Nathan J. White; Xu Wang; Nicole Bradbury; Paula F. Moon-Massat; Daniel Freilich; Charles Auker; Richard M. McCarron; Anke Scultetus; Susan Stern
ABSTRACT Animal models of combined traumatic brain injury (TBI) and hemorrhagic shock (HS) suggest a benefit of hemoglobin-based oxygen carrier (HBOC)–based resuscitation, but their use remains controversial, and little is known of the specific effects of TBI and high-pressure (large arterial injury) bleeding on resuscitation. We examine the effect of TBI and aortic tear injury on low-volume HBOC resuscitation in a swine polytrauma model and hypothesize that HBOC-based resuscitation will improve survival in the setting of aortic tear regardless of the presence of TBI. Anesthetized swine subjected to HS with aortic tear with or without fluid percussion TBI underwent equivalent limited resuscitation with HBOC, lactated Ringer’s solution, or HBOC + nitroglycerine (vasoattenuated HBOC) and were observed for 6 h. There was no independent effect of TBI on survival time after adjustment for fluid type, and there was no interaction between TBI and resuscitation fluid type. However, total catheter hemorrhage volume required to reach target shock blood pressure was less with TBI (14.0 mL · kg−1 [confidence interval, 12.4–15.6 mL · kg−1]) versus HS only (21.0 mL · kg−1 [confidence interval, 19.5–22.5 mL · kg−1]), with equivalent lactate accumulation. Traumatic brain injury did not affect survival in this polytrauma model, but less hemorrhage was required in the presence of TBI to achieve an equivalent degree of shock suggesting globally impaired cardiovascular response to hemorrhage in the presence of TBI. There was also no benefit of HBOC-based fluid resuscitation over lactated Ringer’s solution, contrary to models using liver injury as the source of hemorrhage, considering wound location is of paramount importance when choosing resuscitation strategy.
Journal of Trauma-injury Infection and Critical Care | 2015
Alexander E. St. John; Xu Wang; Esther B. Lim; Diana Chien; Susan Stern; Nathan J. White
BACKGROUND Hemostatic gauzes, which must be packed into wounds and compressed for several minutes, may be of limited use for noncompressible wounds in junctional anatomic locations. Rapid mechanical wound sealing is an alternative approach that seals the wound at the skin, allowing internal clot formation. We evaluate wound sealing for junctional hemorrhage control using a hemostatic clamp (iTClamp). METHODS Severe junctional hemorrhage was induced in anesthetized immature female swine using a 5-mm femoral arteriotomy. After 30 seconds of free bleeding, animals were randomized to one of seven hemostatic interventions: no intervention (control), direct compression for 3 minutes (compression), plain gauze packing (packing), mechanical wound seal (seal), plain gauze packing + wound seal (packing + seal), plain gauze packing + compression (packing + compression), or hemostatic gauze packing (Combat Gauze) + compression (HS-packing + compression). All animals then received one 15-mL/kg bolus of Hextend, followed by lactated Ringer’s solution for hypotension up to 100 mL/kg. Animals were monitored for 3 hours. RESULTS Survival was similar between control (3-hour survival, 0%) and compression (0%, Kaplan-Meier survival analysis and log-rank test [KM-LR], p = 1.0) but marginally improved with packing (12.5%, KM-LR, p < 0.001). Survival improved with seal (62.5%) versus control (KM-LR, p < 0.001) and with packing + seal (100%) versus packing alone (KM-LR, p < 0.001). Survival was similar between packing + compression (87.5%), HS-packing + compression (62.5%), and packing + seal (100%) (KM-LR, p ≥ 0.05). Total hemorrhage volume was decreased for seal versus control (p < 0.001) and for packing + seal versus packing (p < 0.001). Hemorrhage was similar among packing + compression, HS-packing + compression, seal, and packing + seal (analysis of variance p ≥ 0.05). Application times (mean [SD]) were significantly faster with packing + seal (125.8 [56.2] seconds) than packing + compression (236.6 [7.2] seconds) and HS-packing + compression (223.0 [6.8] seconds) (analysis of variance, all p < 0.001). CONCLUSION In this preclinical junctional hemorrhage model, rapid wound sealing improved survival and decreased hemorrhage in both packed and unpacked wounds and performed comparably with standard-of-care hemostatic bandages. Rapidly sealing junctional wounds may be a viable alternative to wound compression.
Resuscitation | 2010
David G. Beiser; Huashan Wang; Jing Li; Xu Wang; Violeta Yordanova; Anshuman Das; Tamara Mirzapoiazova; Joe G. N. Garcia; Susan Stern; Terry L. Vanden Hoek
AIM Cytokine production during hemorrhagic shock (HS) could affect cardiac function during the hours after resuscitation. Visfatin is a recently described protein that functions both as a proinflammatory plasma cytokine and an intracellular enzyme within the nicotinamide adenine dinucleotide (NAD(+)) salvage pathway. We developed a mouse model of HS to study the effect of therapeutic hypothermia (TH) on hemodynamic outcomes and associated plasma and tissue visfatin content. METHODS Mice were bled and maintained at a mean arterial pressure (MAP) of 35 mmHg. After 30 min, animals (n=52) were randomized to normothermia (NT, 37+/-0.5 degrees C) or TH (33+/-0.5 degrees C) followed by rewarming at 60 min following resuscitation. After 90 min of HS (S90), mice were resuscitated and monitored for 180 min (R180). Visfatin, interleukin 6 (IL-6), keratinocyte-derived chemokine (KC), tumor necrosis factor-alpha (TNF-alpha), and myoglobin were measured by ELISA. RESULTS Compared to NT, TH animals exhibited improved R180 survival (23/26 [88.5%] vs. 13/26 [50%]; p=0.001). Plasma visfatin, IL-6, KC, and TNF-alpha increased by S90 in both groups (p<0.05). TH attenuated S90 plasma visfatin and, after rewarming, decreased R180 plasma IL-6, KC, and myoglobin (p<0.05) relative to NT. Heart and gut KC increased at S90 while IL-6 increases were delayed until R180 (p<0.05). NT produced sustained elevations of myocardial KC but decreased visfatin by R180, effects abrogated by TH (p<0.05). CONCLUSIONS In a mouse model of HS, TH improves hemodynamics and alters plasma and tissue proinflammatory cytokines including the novel cytokine visfatin. TH modulation of cytokines may attenuate cardiac dysfunction following HS.
Journal of Trauma-injury Infection and Critical Care | 2011
Jing Li; David G. Beiser; Huashan Wang; Anshuman Das; Evgeny Berdyshev; Juan Li; Alan R. Leff; Susan Stern; Terry L. Vanden Hoek
BACKGROUND Therapeutic hypothermia (TH) has demonstrated great potential for forestalling cardiovascular collapse and improving outcomes in the setting of severe hemorrhagic shock (HS). We used an established mouse model of severe HS to study the response of interrelated cardiac-signaling proteins p38, HspB1, and Akt to shock, resuscitation, and cardioprotective TH. METHODS Adult female C57BL6/J mice were bled and maintained at a mean arterial pressure of 35 mm Hg. After 30 minutes, mice were randomized to 120 minutes of TH (33°C ± 0.5°C) or continued normothermia at 37°C. After 90 minutes, animals were resuscitated and monitored for 180 minutes. Cardiac p38, Akt, and HspB1 phosphorylation (p-p38, p-Akt, and p-HspB1), expression, and Akt/HspB1 interactions were measured at serial time points during HS and resuscitation. Markers of mitochondrial damage (plasma cytochrome c), inflammation (myeloperoxidase), and apoptosis (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling) were analyzed. RESULTS By 15 minutes HS, p-p38 and p-HspB1 significantly increased while p-Akt(T308) decreased (p < 0.05). TH attenuated phosphorylation of the p38α isoform during HS and increased phosphorylation of the p38γ isoform during both HS and early resuscitation (p < 0.05). TH increased Akt/HspB1 coimmunoprecipitation during early resuscitation and increased p-Akt and HspB1 expression during late resuscitation (p < 0.05). Finally, TH attenuated the myocardial myeloperoxidase and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining and plasma cytochrome c during late resuscitation. CONCLUSIONS TH increases phosphorylation of p38γ during both HS and early resuscitation, but attenuates phosphorylation of p38α, increases Akt/HspB1 interaction, and modulates Akt phosphorylation during HS and resuscitation. Such TH-related signaling events are associated with reduced cardiac inflammation, apoptosis, and mitochondrial injury.
Shock | 2014
Nathan J. White; Xu Wang; W. Conrad Liles; Susan Stern
ABSTRACT The purpose of this study was to evaluate the effect of fibrinogen concentrate, as a hemostatic agent, on limited resuscitation of uncontrolled hemorrhagic shock. We use a swine model of hemorrhagic shock with free bleeding from a 4-mm aortic tear to test the effect of adding a one-time dose of fibrinogen concentrate given at the onset of limited fluid resuscitation. Immature female swine were anesthetized and subjected to catheter hemorrhage and aortic tear to induce uniform hemorrhagic shock. Animals (n = 7 per group) were then randomized to receive (i) no fluid resuscitation (neg control) or (ii) limited resuscitation in the form of two boluses of 10 mL/kg of 6% hydroxyethyl starch solution given 30 min apart (HEX group), or (iii) the same fluid regimen with one dose of 120-mg/kg fibrinogen concentrate given with the first hydroxyethyl starch bolus (FBG). Animals were then observed for a total of 6 h with aortic repair and aggressive resuscitation with shed blood taking place at 3 h. Survival to 6 h was significantly increased with FBG (7/8, 86%) versus HEX (2/7, 29%) and neg control (0/7, 0%) (FBG vs. HEX, Kaplan-Meier log-rank P = 0.035). Intraperitoneal blood loss adjusted for survival time was increased in HEX (0.4 mL/kg per minute) when compared with FBG (0.1 mg/kg per minute, P = 0.047) and neg control (0.1 mL/kg per minute, P = 0.041). Systemic and cerebral hemodynamics also showed improvement with FBG versus HEX. Fibrinogen concentrate may be a useful adjunct to decrease blood loss, improve hemodynamics, and prolong survival during limited resuscitation of uncontrolled hemorrhagic shock.
Free Radical Biology and Medicine | 2016
Nathan J. White; Yi Wang; Xiaoyun Fu; Jessica C. Cardenas; Erika J. Martin; Donald F. Brophy; Charles E. Wade; Xu Wang; Alexander E. St. John; Esther B. Lim; Susan Stern; Kevin R. Ward; José A. López; Dominic W. Chung
Victims of trauma often develop impaired blood clot formation (coagulopathy) that contributes to bleeding and mortality. Fibrin polymerization is one critical component of clot formation that can be impacted by post-translational oxidative modifications of fibrinogen after exposure to oxidants. In vitro evidence suggests that Aα-C domain methionine sulfoxide formation, in particular, can induce conformational changes that prevent lateral aggregation of fibrin protofibrils during polymerization. We used mass spectrometry of plasma from trauma patients to find that fibrinogen Aα-C domain methionine sulfoxide content was selectively-increased in patients with coagulopathy vs. those without coagulopathy. This evidence supports a novel linkage between oxidative stress, coagulopathy, and bleeding after injury.
Shock | 2016
James R. Baylis; Alexander E. St. John; Xu Wang; Esther B. Lim; Matthew L. Statz; Diana Chien; Eric Simonson; Susan Stern; Richard Liggins; Nathan J. White; Christian J. Kastrup
Abstract Hemorrhage is the leading cause of preventable death in trauma, and hemorrhage from noncompressible junctional anatomic sites is particularly difficult to control. The current standard is QuikClot Combat Gauze packing, which requires 3 min of compression. We have created a novel dressing with calcium carbonate microparticles that can disperse and self-propel upstream against flowing blood. We loaded these microparticles with thrombin and tranexamic acid and tested their efficacy in a swine arterial bleeding model without wound compression. Anesthetized immature female swine received 5 mm femoral arteriotomies to induce severe junctional hemorrhage. Wounds were packed with kaolin-based QuikClot Combat Gauze (KG), propelled thrombin-microparticles with protonated tranexamic acid (PTG), or a non-propelling formulation of the same thrombin-microparticles with non-protonated tranexamic acid (NPTG). Wounds were not compressed after packing. Each animal then received one 15 mL/kg bolus of hydroxyethyl starch solution followed by Lactated Ringer as needed for hypotension (maximum: 100 mL/kg) for up to 3 h. Survival was improved with PTG (3-h survival: 8/8, 100%) compared with KG (3/8, 37.5%) and NPTG (2/8, 25%) (P <0.01). PTG animals maintained lower serum lactate and higher hemoglobin concentrations than NPTG (P <0.05) suggesting PTG decreased severity of subsequent hemorrhagic shock. However, total blood loss, Lactated Ringer infusion volumes, and mean arterial pressures of surviving animals were not different between groups (P >0.05). Thus, in this swine model of junctional arterial hemorrhage, gauze with self-propelled, prothrombotic microparticles improved survival and 2 indicators of hemorrhagic shock when applied without compression, suggesting this capability may enable better treatment of non-compressible junctional wounds.
Disaster Medicine and Public Health Preparedness | 2016
C. Hayes Wong; Susan Stern; Steven H. Mitchell
OBJECTIVE The 2014 Ebola virus disease (EVD) outbreak in West Africa remains the most deadly in history. Emergency departments (EDs) are more likely to come into contact with potential EVD patients. It is important for EDs to be prepared to care for suspected EVD patients. Our objective was to understand the perceived challenges experienced by Washington State ED medical directors in EVD preparedness. METHODS An anonymous, electronic survey was sent to a convenience sample of ED medical directors across Washington State between November and February of 2014-2015. The perceived challenges of and attitudes toward EVD preparations were assessed and reported as stratified proportions. RESULTS Of 85 medical directors contacted, 59 responses (69%) were received. This included EDs with annual patient volumes of 60,000 (12 hospitals, 20%). Among the perceived challenges in EVD preparations were spatial modifications (eg, building an anteroom for donning and doffing of personal protective equipment) and waste management planning. Ninety-five percent of respondents moderately or strongly agreed that it is important to have a predesignated hospital to care for EVD patients. CONCLUSIONS Washington State ED medical directors have faced significant challenges in ensuring their EDs are prepared to safely care for suspected EVD patients. Attitudes toward EVD preparations are mixed. Varying levels of perceived importance may represent an additional barrier to statewide EVD preparedness. (Disaster Med Public Health Preparedness. 2016;10:662-668).
Journal of Thrombosis and Haemostasis | 2015
Nathan J. White; E. Mehic; Xu Wang; Diana Chien; Esther B. Lim; A. E. St. John; Susan Stern; P. D. Mourad; M. Rieger; D. Fries; U. Martinowitz
Treatments for major internal bleeding after injury include permissive hypotension to decrease the rate of blood loss, intravenous infusion of plasma or clotting factors to improve clot formation, and rapid surgical hemostasis or arterial embolization to control bleeding vessels. Yet, little is known regarding major internal arterial hemostasis, or how these commonly used treatments might influence hemostasis.