Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan Younger is active.

Publication


Featured researches published by Susan Younger.


Cell | 2007

Growing dendrites and axons differ in their reliance on the secretory pathway

Bing Ye; Ye Zhang; Wei Song; Susan Younger; Lily Yeh Jan; Yuh Nung Jan

Little is known about how the distinct architectures of dendrites and axons are established. From a genetic screen, we isolated dendritic arbor reduction (dar) mutants with reduced dendritic arbors but normal axons of Drosophila neurons. We identified dar2, dar3, and dar6 genes as the homologs of Sec23, Sar1, and Rab1 of the secretory pathway. In both Drosophila and rodent neurons, defects in Sar1 expression preferentially affected dendritic growth, revealing evolutionarily conserved difference between dendritic and axonal development in the sensitivity to limiting membrane supply from the secretory pathway. Whereas limiting ER-to-Golgi transport resulted in decreased membrane supply from soma to dendrites, membrane supply to axons remained sustained. We also show that dendritic growth is contributed by Golgi outposts, which are found predominantly in dendrites. The distinct dependence between dendritic and axonal growth on the secretory pathway helps to establish different morphology of dendrites and axons.


Neuron | 2006

Identification of E2/E3 Ubiquitinating Enzymes and Caspase Activity Regulating Drosophila Sensory Neuron Dendrite Pruning

Chay T. Kuo; Sijun Zhu; Susan Younger; Lily Yeh Jan; Yuh Nung Jan

Ubiquitin-proteasome system (UPS) is a multistep protein degradation machinery implicated in many diseases. In the nervous system, UPS regulates remodeling and degradation of neuronal processes and is linked to Wallerian axonal degeneration, though the ubiquitin ligases that confer substrate specificity remain unknown. Having shown previously that class IV dendritic arborization (C4da) sensory neurons in Drosophila undergo UPS-mediated dendritic pruning during metamorphosis, we conducted an E2/E3 ubiquitinating enzyme mutant screen, revealing that mutation in ubcD1, an E2 ubiquitin-conjugating enzyme, resulted in retention of C4da neuron dendrites during metamorphosis. Further, we found that UPS activation likely leads to UbcD1-mediated degradation of DIAP1, a caspase-antagonizing E3 ligase. This allows for local activation of the Dronc caspase, thereby preserving C4da neurons while severing their dendrites. Thus, in addition to uncovering E2/E3 ubiquitinating enzymes for dendrite pruning, this study provides a mechanistic link between UPS and the apoptotic machinery in regulating neuronal process remodeling.


Nature Cell Biology | 2008

Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons.

Yi Zheng; Jill Wildonger; Bing Ye; Ye Zhang; Angela Kita; Susan Younger; Sabina Zimmerman; Lily Yeh Jan; Yuh Nung Jan

Axons and dendrites differ in both microtubule organization and in the organelles and proteins they contain. Here we show that the microtubule motor dynein has a crucial role in polarized transport and in controlling the orientation of axonal microtubules in Drosophila melanogaster dendritic arborization (da) neurons. Changes in organelle distribution within the dendritic arbors of dynein mutant neurons correlate with a proximal shift in dendritic branch position. Dynein is also necessary for the dendrite-specific localization of Golgi outposts and the ion channel Pickpocket. Axonal microtubules are normally oriented uniformly plus-end-distal; however, without dynein, axons contain both plus- and minus-end distal microtubules. These data suggest that dynein is required for the distinguishing properties of the axon and dendrites: without dynein, dendritic organelles and proteins enter the axon and the axonal microtubules are no longer uniform in polarity.


Neuron | 2007

Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization

Peter Soba; Sijun Zhu; Kazuo Emoto; Susan Younger; Shun-Jen Yang; Hung-Hsiang Yu; Tzumin Lee; Lily Yeh Jan; Yuh Nung Jan

A neurons dendrites typically do not cross one another. This intrinsic self-avoidance mechanism ensures unambiguous processing of sensory or synaptic inputs. Moreover, some neurons respect the territory of others of the same type, a phenomenon known as tiling. Different types of neurons, however, often have overlapping dendritic fields. We found that Downs syndrome Cell Adhesion Molecule (Dscam) is required for dendritic self-avoidance of all four classes of Drosophila dendritic arborization (da) neurons. However, neighboring mutant class IV da neurons still exhibited tiling, suggesting that self-avoidance and tiling differ in their recognition and repulsion mechanisms. Introducing 1 of the 38,016 Dscam isoforms to da neurons in Dscam mutants was sufficient to significantly restore self-avoidance. Remarkably, expression of a common Dscam isoform in da neurons of different classes prevented their dendrites from sharing the same territory, suggesting that coexistence of dendritic fields of different neuronal classes requires divergent expression of Dscam isoforms.


Development | 2007

Projections of Drosophila multidendritic neurons in the central nervous system: Links with peripheral dendrite morphology

Wesley B. Grueber; Bing Ye; Chung-Hui Yang; Susan Younger; Kelly Borden; Lily Yeh Jan; Yuh Nung Jan

Neurons establish diverse dendritic morphologies during development, and a major challenge is to understand how these distinct developmental programs might relate to, and influence, neuronal function. Drosophila dendritic arborization (da) sensory neurons display class-specific dendritic morphology with extensive coverage of the body wall. To begin to build a basis for linking dendrite structure and function in this genetic system, we analyzed da neuron axon projections in embryonic and larval stages. We found that multiple parameters of axon morphology, including dorsoventral position, midline crossing and collateral branching, correlate with dendritic morphological class. We have identified a class-specific medial-lateral layering of axons in the central nervous system formed during embryonic development, which could allow different classes of da neurons to develop differential connectivity to second-order neurons. We have examined the effect of Robo family members on class-specific axon lamination, and have also taken a forward genetic approach to identify new genes involved in axon and dendrite development. For the latter, we screened the third chromosome at high resolution in vivo for mutations that affect class IV da neuron morphology. Several known loci, as well as putative novel mutations, were identified that contribute to sensory dendrite and/or axon patterning. This collection of mutants, together with anatomical data on dendrites and axons, should begin to permit studies of dendrite diversity in a combined developmental and functional context, and also provide a foundation for understanding shared and distinct mechanisms that control axon and dendrite morphology.


The Journal of Neuroscience | 2011

Differential Regulation of Dendritic and Axonal Development by the Novel Krüppel-Like Factor Dar1

Bing Ye; Jung Hwan Kim; Limin Yang; Ian G. McLachlan; Susan Younger; Lily Yeh Jan; Yuh Nung Jan

Dendrites and axons are two major neuronal compartments with differences that are critical for neuronal functions. To learn about the differential regulation of dendritic and axonal development, we conducted a genetic screen in Drosophila and isolated the dendritic arbor reduction 1 (dar1) mutants, which display defects in dendritic but not axonal growth. The dar1 gene encodes a novel transcription regulator in the Krüppel-like factor family. Neurons lacking dar1 function have severely reduced growth of microtubule- but not F-actin-based dendritic branches. In contrast, overexpression of Dar1 dramatically increased the growth of microtubule-based dendritic branches. Our results suggest that Dar1 promotes dendrite growth in part by suppressing the expression of the microtubule-severing protein Spastin. Our study thus uncovers a novel transcriptional program for microtubule regulation that preferentially controls dendrite growth.


Cell Reports | 2014

Identification of Ppk26, a DEG/ENaC Channel Functioning with Ppk1 in a Mutually Dependent Manner to Guide Locomotion Behavior in Drosophila

David Gorczyca; Susan Younger; Shan Meltzer; Sung Eun Kim; Li Cheng; Wei Song; Hye Young Lee; Lily Yeh Jan; Yuh Nung Jan

A major gap in our understanding of sensation is how a single sensory neuron can differentially respond to a multitude of different stimuli (polymodality), such as propio- or nocisensation. The prevailing hypothesis is that different stimuli are transduced through ion channels with diverse properties and subunit composition. In a screen for ion channel genes expressed in polymodal nociceptive neurons, we identified Ppk26, a member of the trimeric degenerin/epithelial sodium channel (DEG/ENaC) family, as being necessary for proper locomotion behavior in Drosophila larvae in a mutually dependent fashion with coexpressed Ppk1, another member of the same family. Mutants lacking Ppk1 and Ppk26 were defective in mechanical, but not thermal, nociception behavior. Mutants of Piezo, a channel involved in mechanical nociception in the same neurons, did not show a defect in locomotion, suggesting distinct molecular machinery for mediating locomotor feedback and mechanical nociception.


PLOS ONE | 2012

The bHLH Repressor Deadpan Regulates the Self-renewal and Specification of Drosophila Larval Neural Stem Cells Independently of Notch

Sijun Zhu; Jill Wildonger; Suzanne Barshow; Susan Younger; Yaling Huang; Tzumin Lee

Neural stem cells (NSCs) are able to self-renew while giving rise to neurons and glia that comprise a functional nervous system. However, how NSC self-renewal is maintained is not well understood. Using the Drosophila larval NSCs called neuroblasts (NBs) as a model, we demonstrate that the Hairy and Enhancer-of-Split (Hes) family protein Deadpan (Dpn) plays important roles in NB self-renewal and specification. The loss of Dpn leads to the premature loss of NBs and truncated NB lineages, a process likely mediated by the homeobox protein Prospero (Pros). Conversely, ectopic/over-expression of Dpn promotes ectopic self-renewing divisions and maintains NB self-renewal into adulthood. In type II NBs, which generate transit amplifying intermediate neural progenitors (INPs) like mammalian NSCs, the loss of Dpn results in ectopic expression of type I NB markers Asense (Ase) and Pros before these type II NBs are lost at early larval stages. Our results also show that knockdown of Notch leads to ectopic Ase expression in type II NBs and the premature loss of type II NBs. Significantly, dpn expression is unchanged in these transformed NBs. Furthermore, the loss of Dpn does not inhibit the over-proliferation of type II NBs and immature INPs caused by over-expression of activated Notch. Our data suggest that Dpn plays important roles in maintaining NB self-renewal and specification of type II NBs in larval brains and that Dpn and Notch function independently in regulating type II NB proliferation and specification.


Nature Neuroscience | 2015

EAG2 potassium channel with evolutionarily conserved function as a brain tumor target

Xi Huang; Ye He; Adrian Dubuc; Rintaro Hashizume; Wei Zhang; Jüri Reimand; Huanghe Yang; Tongfei Wang; Samantha J. Stehbens; Susan Younger; Suzanne Barshow; Sijun Zhu; Michael K. Cooper; John Peacock; Vijay Ramaswamy; Livia Garzia; Xiaochong Wu; Marc Remke; Craig M. Forester; Charles C. Kim; William A. Weiss; C. David James; Marc A. Shuman; Gary D. Bader; Sabine Mueller; Michael D. Taylor; Yuh Nung Jan; Lily Yeh Jan

Over 20% of the drugs for treating human diseases target ion channels, but no cancer drug approved by the US Food and Drug Administration (FDA) is intended to target an ion channel. We found that the EAG2 (Ether-a-go-go 2) potassium channel has an evolutionarily conserved function for promoting brain tumor growth and metastasis, delineate downstream pathways, and uncover a mechanism for different potassium channels to functionally cooperate and regulate mitotic cell volume and tumor progression. EAG2 potassium channel was enriched at the trailing edge of migrating medulloblastoma (MB) cells to regulate local cell volume dynamics, thereby facilitating cell motility. We identified the FDA-approved antipsychotic drug thioridazine as an EAG2 channel blocker that reduces xenografted MB growth and metastasis, and present a case report of repurposing thioridazine for treating a human patient. Our findings illustrate the potential of targeting ion channels in cancer treatment.


eLife | 2013

Subdued, a TMEM16 family Ca2+-activated Cl− channel in Drosophila melanogaster with an unexpected role in host defense

Xiu Ming Wong; Susan Younger; Christian J. Peters; Yuh Nung Jan; Lily Yeh Jan

TMEM16A and TMEM16B are calcium-activated chloride channels (CaCCs) with important functions in mammalian physiology. Whether distant relatives of the vertebrate TMEM16 families also form CaCCs is an intriguing open question. Here we report that a TMEM16 family member from Drosophila melanogaster, Subdued (CG16718), is a CaCC. Amino acid substitutions of Subdued alter the ion selectivity and kinetic properties of the CaCC channels heterologously expressed in HEK 293T cells. This Drosophila channel displays characteristics of classic CaCCs, thereby providing evidence for evolutionarily conserved biophysical properties in the TMEM16 family. Additionally, we show that knockout flies lacking subdued gene activity more readily succumb to death caused by ingesting the pathogenic bacteria Serratia marcescens, suggesting that subdued has novel functions in Drosophila host defense. DOI: http://dx.doi.org/10.7554/eLife.00862.001

Collaboration


Dive into the Susan Younger's collaboration.

Top Co-Authors

Avatar

Lily Yeh Jan

University of California

View shared research outputs
Top Co-Authors

Avatar

Yuh Nung Jan

University of California

View shared research outputs
Top Co-Authors

Avatar

Bing Ye

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Sijun Zhu

University of California

View shared research outputs
Top Co-Authors

Avatar

Wei Song

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill Wildonger

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shan Meltzer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tzumin Lee

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge