Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susana Gonzalo is active.

Publication


Featured researches published by Susana Gonzalo.


Nature Structural & Molecular Biology | 2008

A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases

Roberta Benetti; Susana Gonzalo; Isabel Jaco; Purificación Muñoz; Susana Gonzalez; Stefan Schoeftner; Elizabeth P. Murchison; Thomas Andl; Taiping Chen; Peter Klatt; En Li; Manuel Serrano; Sarah E. Millar; Gregory J. Hannon; Maria A. Blasco

Dicer initiates RNA interference by generating small RNAs involved in various silencing pathways. Dicer participates in centromeric silencing, but its role in the epigenetic regulation of other chromatin domains has not been explored. Here we show that Dicer1 deficiency in Mus musculus leads to decreased DNA methylation, concomitant with increased telomere recombination and telomere elongation. These DNA-methylation defects correlate with decreased expression of Dnmt1, Dnmt3a and Dnmt3b DNA methyltransferases (Dnmts), and methylation levels can be recovered by their overexpression. We identify the retinoblastoma-like 2 protein (Rbl2) as responsible for decreased Dnmt expression in Dicer1-null cells, suggesting the existence of Dicer-dependent small RNAs that target Rbl2. We identify the miR-290 cluster as being downregulated in Dicer1-deficient cells and show that it silences Rbl2, thereby controlling Dnmt expression. These results identify a pathway by which miR-290 directly regulates Rbl2-dependent Dnmt expression, indirectly affecting telomere-length homeostasis.


Nature Cell Biology | 2005

Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin

Susana Gonzalo; Marta García-Cao; Mario F. Fraga; Gunnar Schotta; Antoine H.F.M. Peters; Shane E. Cotter; Raúl Eguı́a; Douglas C. Dean; Manel Esteller; Thomas Jenuwein; Maria A. Blasco

Here, we show a role for the RB1 family proteins in directing full heterochromatin formation. Mouse embryonic fibroblasts that are triply deficient for RB1 (retinoblastoma 1), RBL1 (retinoblastoma-like 1) and RBL2 (retinoblastoma-like 2) — known as TKO cells — show a marked genomic instability, which is coincidental with decreased DNA methylation, increased acetylation of histone H3 and decreased tri-methylation of histone H4 at lysine 20 (H4K20). Chromatin immunoprecipitation showed that H4K20 tri-methylation was specifically decreased at pericentric and telomeric chromatin. These defects are independent of E2F family function. Indeed, we show a direct interaction between the RB1 proteins and the H4K20 tri-methylating enzymes Suv4-20h1 and Suv4-20h2, indicating that the RB1 family has a role in controlling H4K20 tri-methylation by these histone methyltransferases. These observations indicate that the RB1 family is involved in maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin, linking tumour suppression and the epigenetic definition of chromatin.


PLOS Genetics | 2008

The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure.

Brendan Jones; Hui Su; Audesh Bhat; Hong Lei; Jeffrey Bajko; Sarah Hevi; Gretchen A. Baltus; Shilpa Kadam; Huili Zhai; Reginald Valdez; Susana Gonzalo; Yi Zhang; En Li; Taiping Chen

Dot1 is an evolutionarily conserved histone methyltransferase specific for lysine 79 of histone H3 (H3K79). In Saccharomyces cerevisiae, Dot1-mediated H3K79 methylation is associated with telomere silencing, meiotic checkpoint control, and DNA damage response. The biological function of H3K79 methylation in mammals, however, remains poorly understood. Using gene targeting, we generated mice deficient for Dot1L, the murine Dot1 homologue. Dot1L-deficient embryos show multiple developmental abnormalities, including growth impairment, angiogenesis defects in the yolk sac, and cardiac dilation, and die between 9.5 and 10.5 days post coitum. To gain insights into the cellular function of Dot1L, we derived embryonic stem (ES) cells from Dot1L mutant blastocysts. Dot1L-deficient ES cells show global loss of H3K79 methylation as well as reduced levels of heterochromatic marks (H3K9 di-methylation and H4K20 tri-methylation) at centromeres and telomeres. These changes are accompanied by aneuploidy, telomere elongation, and proliferation defects. Taken together, these results indicate that Dot1L and H3K79 methylation play important roles in heterochromatin formation and in embryonic development.


Molecular Cell | 2001

Linking the Rb and Polycomb Pathways

Anjali Dahiya; Sharon Wong; Susana Gonzalo; Mark Gavin; Douglas C. Dean

Polycomb group (PcG) proteins associate to form complexes that repress Hox genes, thereby imposing the patterning of Hox expression required for development. However, these proteins have a second Hox-independent role in regulating cell proliferation. Our results suggest that association between Rb and PcG proteins forms a repressor complex that blocks entry of cells into mitosis. Also, we provide evidence that Rb colocalizes with nuclear PcG complexes and is important for association of PcG complexes with nuclear targets. The Rb-PcG complex may provide a means to link cell cycle arrest to differentiation events leading to embryonic pattern formation.


Journal of Cell Biology | 2007

Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination

Roberta Benetti; Susana Gonzalo; Isabel Jaco; Gunnar Schotta; Peter Klatt; Thomas Jenuwein; Maria A. Blasco

Mammalian telomeres have heterochromatic features, including trimethylated histone H3 at lysine 9 (H3K9me3) and trimethylated histone H4 at lysine 20 (H4K20me3). In addition, subtelomeric DNA is hypermethylated. The enzymatic activities responsible for these modifications at telomeres are beginning to be characterized. In particular, H4K20me3 at telomeres could be catalyzed by the novel Suv4-20h1 and Suv4-20h2 histone methyltransferases (HMTases). In this study, we demonstrate that the Suv4-20h enzymes are responsible for this histone modification at telomeres. Cells deficient for Suv4-20h2 or for both Suv4-20h1 and Suv4-20h2 show decreased levels of H4K20me3 at telomeres and subtelomeres in the absence of changes in H3K9me3. These epigenetic alterations are accompanied by telomere elongation, indicating a role for Suv4-20h HMTases in telomere length control. Finally, cells lacking either the Suv4-20h or Suv39h HMTases show increased frequencies of telomere recombination in the absence of changes in subtelomeric DNA methylation. These results demonstrate the importance of chromatin architecture in the maintenance of telomere length homeostasis and reveal a novel role for histone lysine methylation in controlling telomere recombination.


The EMBO Journal | 2009

Novel roles for A-type lamins in telomere biology and the DNA damage response pathway

Ignacio Gonzalez-Suarez; Abena B. Redwood; Stephanie M. Perkins; Bart Vermolen; Daniel Lichtensztejin; David A. Grotsky; Lucia Morgado-Palacin; Eric J. Gapud; Barry P. Sleckman; Teresa Sullivan; Julien Sage; Colin L. Stewart; Sabine Mai; Susana Gonzalo

A‐type lamins are intermediate filament proteins that provide a scaffold for protein complexes regulating nuclear structure and function. Mutations in the LMNA gene are linked to a variety of degenerative disorders termed laminopathies, whereas changes in the expression of lamins are associated with tumourigenesis. The molecular pathways affected by alterations of A‐type lamins and how they contribute to disease are poorly understood. Here, we show that A‐type lamins have a key role in the maintenance of telomere structure, length and function, and in the stabilization of 53BP1, a component of the DNA damage response (DDR) pathway. Loss of A‐type lamins alters the nuclear distribution of telomeres and results in telomere shortening, defects in telomeric heterochromatin, and increased genomic instability. In addition, A‐type lamins are necessary for the processing of dysfunctional telomeres by non‐homologous end joining, putatively through stabilization of 53BP1. This study shows new functions for A‐type lamins in the maintenance of genomic integrity, and suggests that alterations of telomere biology and defects in DDR contribute to the pathogenesis of lamin‐related diseases.


Journal of Applied Physiology | 2010

Epigenetic alterations in aging

Susana Gonzalo

Aging is a multifaceted process characterized by genetic and epigenetic changes in the genome. The genetic component of aging received initially all of the attention. Telomere attrition and accumulation of mutations due to a progressive deficiency in the repair of DNA damage with age remain leading causes of genomic instability. However, epigenetic mechanisms have now emerged as key contributors to the alterations of genome structure and function that accompany aging. The three pillars of epigenetic regulation are DNA methylation, histone modifications, and noncoding RNA species. Alterations of these epigenetic mechanisms affect the vast majority of nuclear processes, including gene transcription and silencing, DNA replication and repair, cell cycle progression, and telomere and centromere structure and function. Here, we summarize the lines of evidence indicating that these epigenetic defects might represent a major factor in the pathophysiology of aging and aging-related diseases, especially cancer.


Journal of Biological Chemistry | 1999

SNAP-25 is targeted to the plasma membrane through a novel membrane-binding domain.

Susana Gonzalo; Wendy K. Greentree; Maurine E. Linder

SNAP-25, syntaxin, and synaptobrevin are SNARE proteins that mediate fusion of synaptic vesicles with the plasma membrane. Membrane attachment of syntaxin and synaptobrevin is achieved through a C-terminal hydrophobic tail, whereas SNAP-25 association with membranes appears to depend upon palmitoylation of cysteine residues located in the center of the molecule. This process requires an intact secretory pathway and is inhibited by brefeldin A. Here we show that the minimal plasma membrane-targeting domain of SNAP-25 maps to residues 85–120. This sequence is both necessary and sufficient to target a heterologous protein to the plasma membrane. Palmitoylation of this domain is sensitive to brefeldin A, suggesting that it uses the same membrane-targeting mechanism as the full-length protein. As expected, the palmitoylated cysteine cluster is present within this domain, but surprisingly, membrane anchoring requires an additional five-amino acid sequence that is highly conserved among SNAP-25 family members. Significantly, the membrane-targeting module coincides with the protease-sensitive stretch (residues 83–120) that connects the two α-helices that SNAP-25 contributes to the four-helix bundle of the synaptic SNARE complex. Our results demonstrate that residues 85–120 of SNAP-25 represent a protein module that is physically and functionally separable from the SNARE complex-forming domains.


Nature Genetics | 2002

A role for the Rb family of proteins in controlling telomere length

Marta García-Cao; Susana Gonzalo; Douglas C. Dean; Maria A. Blasco

The molecular mechanisms of cellular mortality have recently begun to be unraveled. In particular, it has been discovered that cells that lack telomerase are subject to telomere attrition with each round of replication, eventually leading to loss of telomere capping function at chromosome ends. Critically short telomeres and telomeres lacking telomere-binding proteins lose their functionality and are metabolized as DNA breaks, thus generating chromosomal fusions. Telomerase activity is sufficient to rescue short telomeres and confers an unlimited proliferative capacity. In addition, the tumor-suppressor pathway Cdkn2a/Rb1 has also been implicated as a barrier to immortalization. Here, we report a connection between the members of the retinoblastoma family of proteins, Rb1 (retinoblastoma 1), Rbl1 (retinoblastoma-like 1) and Rbl2 (retinoblastoma-like 2), and the mechanisms that regulate telomere length. In particular, mouse embryonic fibroblasts doubly deficient in Rbl1 and Rbl2 or triply deficient in Rbl1, Rbl2 and Rb1 have markedly elongated telomeres compared with those of wildtype or Rb1-deficient cells. This deregulation of telomere length is not associated with increased telomerase activity. Notably, the abnormally elongated telomeres in doubly or triply deficient cells retain their end-capping function, as shown by the normal frequency of chromosomal fusions. These findings demonstrate a connection between the Rb1 family and the control of telomere length in mammalian cells.


Cell Cycle | 2005

Role of Rb Family in the Epigenetic Definition of Chromatin

Susana Gonzalo; Maria A. Blasco

Epigenetic changes can influence a variety of cellular processes from regulation of gene transcription to proper chromosome segregation. The molecular activities that dictate the assembly, maintenance and regulation of chromatin structure are beginning to be identified. A recent study demonstrates that the Rb family of tumour suppressors plays a major role in global chromatin structure. In addition to the well-known function of Rb family inducing a repressive chromatin state around euchromatic promoters, Rb proteins have a direct role in the assembly of pericentric and telomeric heterochromatin domains. In particular, the Rb family maintains histone 4 lysine 20 tri-methylation (H4K20) at these constitutive heterochromatin domains. Lack of the Rb family results in decreased H4K20 tri-methylation, coincidental with chromosome segregation defects and abnormal telomere elongation, two processes frequently altered in human cancer. Maintenance of heterochromatic domains, such as those of centromeres and telomeres, may represent a novel tumour suppressor function for the Rb family by ensuing genomic stability.

Collaboration


Dive into the Susana Gonzalo's collaboration.

Top Co-Authors

Avatar

Ignacio Gonzalez-Suarez

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Abena B. Redwood

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Grotsky

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junran Zhang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Maria A. Blasco

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Adriana Dusso

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Colin L. Stewart

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge