Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susana Igreja is active.

Publication


Featured researches published by Susana Igreja.


The Journal of Clinical Endocrinology and Metabolism | 2008

The Role of the Aryl Hydrocarbon Receptor-Interacting Protein Gene in Familial and Sporadic Pituitary Adenomas

Chrysanthia Leontiou; Maria Gueorguiev; Jacqueline van der Spuy; Richard Quinton; Francesca Lolli; Sevda Hassan; Harvinder S. Chahal; Susana Igreja; Suzanne Jordan; Janice Rowe; Marie Stolbrink; Helen Christian; Jessica A. Wray; David Bishop-Bailey; Daniel M. Berney; John Wass; Vera Popovic; Antônio Ribeiro-Oliveira; Mônica R. Gadelha; John P. Monson; Julian R. E. Davis; Richard N. Clayton; Katsuhiko Yoshimoto; Takeo Iwata; Akira Matsuno; Kuniki Eguchi; Mâdâlina Musat; Daniel Flanagan; Gordon Peters; Graeme B. Bolger

CONTEXT Mutations have been identified in the aryl hydrocarbon receptor-interacting protein (AIP) gene in familial isolated pituitary adenomas (FIPA). It is not clear, however, how this molecular chaperone is involved in tumorigenesis. OBJECTIVE AIP sequence changes and expression were studied in FIPA and sporadic adenomas. The function of normal and mutated AIP molecules was studied on cell proliferation and protein-protein interaction. Cellular and ultrastructural AIP localization was determined in pituitary cells. PATIENTS Twenty-six FIPA kindreds and 85 sporadic pituitary adenoma patients were included in the study. RESULTS Nine families harbored AIP mutations. Overexpression of wild-type AIP in TIG3 and HEK293 human fibroblast and GH3 pituitary cell lines dramatically reduced cell proliferation, whereas mutant AIP lost this ability. All the mutations led to a disruption of the protein-protein interaction between AIP and phosphodiesterase-4A5. In normal pituitary, AIP colocalizes exclusively with GH and prolactin, and it is found in association with the secretory vesicle, as shown by double-immunofluorescence and electron microscopy staining. In sporadic pituitary adenomas, however, AIP is expressed in all tumor types. In addition, whereas AIP is expressed in the secretory vesicle in GH-secreting tumors, similar to normal GH-secreting cells, in lactotroph, corticotroph, and nonfunctioning adenomas, it is localized to the cytoplasm and not in the secretory vesicles. CONCLUSIONS Our functional evaluation of AIP mutations is consistent with a tumor-suppressor role for AIP and its involvement in familial acromegaly. The abnormal expression and subcellular localization of AIP in sporadic pituitary adenomas indicate deranged regulation of this protein during tumorigenesis.


The FASEB Journal | 2008

AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing’s syndrome

Mirjam Christ-Crain; Blerina Kola; Francesca Lolli; Csaba Fekete; Dalma Seboek; Gábor Wittmann; Daniel Feltrin; Susana Igreja; Sharon Jane Ajodha; Judith Harvey-White; George Kunos; Beat Müller; François P. Pralong; Gregory Aubert; Giorgio Arnaldi; Gilberta Giacchetti; Marco Boscaro; Ashley B. Grossman; Márta Korbonits

Chronic exposure to glucocorticoid hormones, resulting from either drug treatment or Cushings syndrome, results in insulin resistance, central obesity, and symptoms similar to the metabolic syndrome. We hypothesized that the major metabolic effects of corticosteroids are mediated by changes in the key metabolic enzyme adenosine monophosphate‐activated protein kinase (AMPK) activity. Activation of AMPK is known to stimulate appetite in the hypothalamus and stimulate catabolic processes in the periphery. We assessed AMPK activity and the expression of several metabolic enzymes in the hypothalamus, liver, adipose tissue, and heart of a rat glucocorticoid‐excess model as well as in in vitro studies using primary human adipose and primary rat hypothalamic cell cultures, and a human hepatoma cell line treated with dexamethasone and metformin. Glucocorticoid treatment inhibited AMPK activity in rat adipose tissue and heart, while stimulating it in the liver and hypothalamus. Similar data were observed in vitro in the primary adipose and hypothalamic cells and in the liver cell line. Metformin, a known AMPK regulator, prevented the corticosteroidinduced effects on AMPK in human adipocytes and rat hypothalamic neurons. Our data suggest that glucocorticoid‐induced changes in AMPK constitute a novel mechanism that could explain the increase in appetite, the deposition of lipids in visceral adipose and hepatic tissue, as well as the cardiac changes that are all characteristic of glucocorticoid excess. Our data suggest that metformin treatment could be effective in preventing the metabolic complications of chronic glucocorticoid excess.— Christ‐Crain M., Kola, B., Lolli F., Fekete, C., Seboek, D., Wittmann, G., Feltrin, D., Igreja, S. C., Ajodha, S., Harvey‐White, J., Kunos, G., Müller B., Pralong, F., Aubert, G., Arnaldi, G., Giacchetti, G., Boscaro, M., Grossman, A. B., Korbonits M. AMP‐activated protein kinase mediates glucocorticoidinduced metabolic changes: a novel mechanism in Cushings syndrome. FASEB J. 22, 1672–1683 (2008)


Human Mutation | 2010

Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families

Susana Igreja; Harvinder S. Chahal; Peter King; Graeme B. Bolger; Umasuthan Srirangalingam; Leonardo Guasti; J. Paul Chapple; Giampaolo Trivellin; Maria Gueorguiev; Katie Guegan; Karen Stals; Bernard Khoo; Ajith Kumar; Sian Ellard; Ashley B. Grossman; Márta Korbonits

Familial isolated pituitary adenoma (FIPA) is an autosomal dominant condition with variable genetic background and incomplete penetrance. Germline mutations of the aryl hydrocarbon receptor interacting protein (AIP) gene have been reported in 15–40% of FIPA patients. Limited data are available on the functional consequences of the mutations or regarding the regulation of the AIP gene. We describe a large cohort of FIPA families and characterize missense and silent mutations using minigene constructs, luciferase and β‐galactosidase assays, as well as in silico predictions. Patients with AIP mutations had a lower mean age at diagnosis (23.6±11.2 years) than AIP mutation‐negative patients (40.4±14.5 years). A promoter mutation showed reduced in vitro activity corresponding to lower mRNA expression in patient samples. Stimulation of the protein kinase A‐pathway positively regulates the AIP promoter. Silent mutations led to abnormal splicing resulting in truncated protein or reduced AIP expression. A two‐hybrid assay of protein–protein interaction of all missense variants showed variable disruption of AIP‐phosphodiesterase‐4A5 binding. In summary, exonic, promoter, splice‐site, and large deletion mutations in AIP are implicated in 31% of families in our FIPA cohort. Functional characterization of AIP changes is important to identify the functional impact of gene sequence variants. Hum Mutat 31:1–11, 2010.


Endocrine-related Cancer | 2009

Activation of RAF/MEK/ERK and PI3K/AKT/mTOR pathways in pituitary adenomas and their effects on downstream effectors

Dorota Dworakowska; Elizabeth Wlodek; Chrysanthia Leontiou; Susana Igreja; Mehtap Cakir; Mable Teng; Natalia Prodromou; Miklós Góth; Simona Grozinsky-Glasberg; Maria Gueorguiev; Blerina Kola; Márta Korbonits; Ashley B. Grossman

Raf/MEK/ERK and phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) cascades are key signalling pathways interacting with each other to regulate cell growth and tumourigenesis. We have previously shown B-Raf and Akt overexpression and/or overactivation in pituitary adenomas. The aim of this study is to assess the expression of their downstream components (MEK1/2, ERK1/2, mTOR, TSC2, p70S6K) and effectors (c-MYC and CYCLIN D1). We studied tissue from 16 non-functioning pituitary adenomas (NFPAs), six GH-omas, six prolactinomas and six ACTH-omas, all collected at transsphenoidal surgery; 16 normal autopsy pituitaries were used as controls. The expression of phospho and total protein was assessed with western immunoblotting, and the mRNA expression with quantitative RT-PCR. The expression of pSer217/221 MEK1/2 and pThr183 ERK1/2 (but not total MEK1/2 or ERK1/2) was significantly higher in all tumour subtypes in comparison to normal pituitaries. There was no difference in the expression of phosphorylated/total mTOR, TSC2 or p70S6K between pituitary adenomas and controls. Neither c-MYC phosphorylation at Ser 62 nor total c-MYC was changed in the tumours. However, c-MYC phosphorylation at Thr58/Ser62 (a response target for Akt) was decreased in all tumour types. CYCLIN D1 expression was higher only in NFPAs. The mRNA expression of MEK1, MEK2, ERK1, ERK2, c-MYC and CCND1 was similar in all groups. Our data indicate that in pituitary adenomas both the Raf/MEK/ERK and PI3K/Akt/mTOR pathways are upregulated in their initial cascade, implicating a pro-proliferative signal derangement upstream to their point of convergence. However, we speculate that other processes, such as senescence, attenuate the changes downstream in these benign tumours.


The Journal of Clinical Endocrinology and Metabolism | 2012

Somatostatin analogs modulate AIP in somatotroph adenomas: the role of the ZAC1 pathway.

Harvinder S. Chahal; Giampaolo Trivellin; Chrysanthia Leontiou; Neda Alband; Robert C. Fowkes; Asil Tahir; Susana Igreja; J. Paul Chapple; Susan Jordan; Amelie Lupp; Stefan Schulz; Olaf Ansorge; Niki Karavitaki; Eivind Carlsen; John Wass; Ashley B. Grossman; Márta Korbonits

CONTEXT Somatotroph adenomas harboring aryl hydrocarbon receptor interacting protein (AIP) mutations respond less well to somatostatin analogs, suggesting that the effects of somatostatin analogs may be mediated by AIP. OBJECTIVE The objective of the investigation was to study the involvement of AIP in the mechanism of effect of somatostatin analogs. DESIGN In the human study, a 16-wk somatostatin analog pretreatment compared with no pretreatment. In the in vitro cell line study, the effect of somatostatin analog treatment or small interfering RNA (siRNA)/plasmid transfection were studied. SETTING The study was conducted at a university hospital. PATIENTS Thirty-nine sporadic and 10 familial acromegaly patients participated in the study. INTERVENTION Interventions included preoperative lanreotide treatment and pituitary surgery. OUTCOME For the human study, GH and IGF-I levels, AIP, and somatostatin receptor staining were measured. For the cell line, AIP and ZAC1 (zinc finger regulator of apoptosis and cell cycle arrest) expression, metabolic activity, and clone formation were measured. RESULTS Lanreotide pretreatment reduced GH and IGF-I levels and tumor volume (all P < 0.0001). AIP immunostaining was stronger in the lanreotide-pretreated group vs. the surgery-only group (P < 0.001). After lanreotide pretreatment, the AIP score correlated to IGF-I changes in females (R = 0.68, P < 0.05). Somatostatin receptor staining was not reduced in samples with AIP mutations. In GH3 cells, 1 nm octreotide increased AIP mRNA and protein (both P < 0.01) and ZAC1 mRNA expression (P < 0.05). Overexpression of wild-type (but not mutant) AIP increased ZAC1 mRNA expression, whereas AIP siRNA knockdown reduced ZAC1 mRNA (both P < 0.05). The siRNA-mediated knockdown of AIP led to an increased metabolic activity and clonogenic ability of GH3 cells compared with cells transfected with a nontargeting control (both P < 0.001). CONCLUSION These results suggest that AIP may play a role in the mechanism of action of somatostatin analogs via ZAC1 in sporadic somatotroph tumors and may explain their lack of effectiveness in patients with AIP mutations.


Clinical Endocrinology | 2009

Assessment of p27 (cyclin-dependent kinase inhibitor 1B) and aryl hydrocarbon receptor-interacting protein (AIP) genes in multiple endocrine neoplasia (MEN1) syndrome patients without any detectable MEN1 gene mutations

Susana Igreja; Harvinder S. Chahal; Maria Gueorguiev; Vera Popovic; Svetozar Damjanovic; Pia Burman; John Wass; Richard Quinton; Ashley B. Grossman; Márta Korbonits

Objective  Germline mutations in the MEN1 gene predispose to the multiple endocrine neoplasia (MEN1) syndrome; however, approximately 10–20% of patients with MEN1 do not have a detectable MEN1 mutation. A rat strain with multiple endocrine tumours, a phenotypic overlap of both MEN1 and MEN2, has been reported to have a homozygous germline p27 (CDKN1B) mutation. Recently, two MEN1 mutation‐negative MEN1 syndrome patients have been identified to harbour a germline CDKN1B mutation. The recently identified gene AIP can also cause familial isolated pituitary adenoma, but no other specific tumour is associated with this syndrome. The objective of this study was to evaluate the possible contribution of CDKN1B and AIP germline mutations in a cohort of MEN1 mutation‐negative MEN1 syndrome patients.


Human Mutation | 2016

Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides.

Susana Igreja; Luka A. Clarke; Hugo M. Botelho; Luís Marques; Margarida D. Amaral

Cystic fibrosis (CF), the most common life‐threatening genetic disease in Caucasians, is caused by ∼2,000 different mutations in the CF transmembrane conductance regulator (CFTR) gene. A significant fraction of these (∼13%) affect pre‐mRNA splicing for which novel therapies have been somewhat neglected. We have previously described the effect of the CFTR splicing mutation c.2657+5G>A in IVS16, showing that it originates transcripts lacking exon 16 as well as wild‐type transcripts. Here, we tested an RNA‐based antisense oligonucleotide (AON) strategy to correct the aberrant splicing caused by this mutation. Two AONs (AON1/2) complementary to the pre‐mRNA IVS16 mutant region were designed and their effect on splicing was assessed at the RNA and protein levels, on intracellular protein localization and function. To this end, we used the 2657+5G>A mutant CFTR minigene stably expressed in HEK293 Flp‐In cells that express a single copy of the transgene. RNA data from AON1‐treated mutant cells show that exon 16 inclusion was almost completely restored (to 95%), also resulting in increased levels of correctly localized CFTR protein at the plasma membrane (PM) and with increased function. A novel two‐color CFTR splicing reporter minigene developed here allowed the quantitative monitoring of splicing by automated microscopy localization of CFTR at the PM. The AON strategy is thus a promising therapeutic approach for the specific correction of alternative splicing.


European Journal of Human Genetics | 2014

Assessing the residual CFTR gene expression in human nasal epithelium cells bearing CFTR splicing mutations causing cystic fibrosis

Laia Masvidal; Susana Igreja; Maria D. Ramos; A. Alvarez; Javier de Gracia; Anabela S. Ramalho; Margarida D. Amaral; Sara Larriba; Teresa Casals

The major purpose of the present study was to quantify correctly spliced CFTR transcripts in human nasal epithelial cells from cystic fibrosis (CF) patients carrying the splicing mutations c.580-1G>T (712-1G>T) and c.2657+5G>A (2789+5G>A) and to assess the applicability of this model in CFTR therapeutic approaches. We performed the relative quantification of CFTR mRNA by reverse transcription quantitative PCR (RT-qPCR) of these splicing mutations in four groups (wild type, CF-F508del controls, CF patients and CF carriers) of individuals. In addition, in vitro assays using minigene constructs were performed to evaluate the effect of a new CF complex allele c.[2657+5G>A; 2562T>G]. Ex vivo qPCR data show that the primary consequence of both mutations at the RNA level is the skipping of their neighboring exon (6 and 16, respectively). The CFTR minigenes results mimicked the ex vivo data, as exon 16 skipping is the main aberrant transcript, and the correctly spliced transcript level was observed in a similar proportion when the c.2657+5G>A mutation is present. In summary, we provide evidence that ex vivo quantitative transcripts analysis using RT/qPCR is a robust technology that could be useful for measuring the efficacy of therapeutic approaches that attempt to achieve an increase in CFTR gene expression.


Clinical Genetics | 2017

mRNA‐based detection of rare CFTR mutations improves genetic diagnosis of cystic fibrosis in populations with high genetic heterogeneity

Verónica Felício; Anabela S. Ramalho; Susana Igreja; Margarida D. Amaral

Even with advent of next generation sequencing complete sequencing of large disease‐associated genes and intronic regions is economically not feasible. This is the case of cystic fibrosis transmembrane conductance regulator (CFTR), the gene responsible for cystic fibrosis (CF). Yet, to confirm a CF diagnosis, proof of CFTR dysfunction needs to be obtained, namely by the identification of two disease‐causing mutations. Moreover, with the advent of mutation‐based therapies, genotyping is an essential tool for CF disease management. There is, however, still an unmet need to genotype CF patients by fast, comprehensive and cost‐effective approaches, especially in populations with high genetic heterogeneity (and low p.F508del incidence), where CF is now emerging with new diagnosis dilemmas (Brazil, Asia, etc). Herein, we report an innovative mRNA‐based approach to identify CFTR mutations in the complete coding and intronic regions. We applied this protocol to genotype individuals with a suspicion of CF and only one or no CFTR mutations identified by routine methods. It successfully detected multiple intronic mutations unlikely to be detected by CFTR exon sequencing. We conclude that this is a rapid, robust and inexpensive method to detect any CFTR coding/intronic mutation (including rare ones) that can be easily used either as primary approach or after routine DNA analysis.


American Journal of Physiology-endocrinology and Metabolism | 2012

MicroRNA miR-107 is overexpressed in pituitary adenomas and inhibits the expression of aryl hydrocarbon receptor-interacting protein in vitro

Giampaolo Trivellin; Henriett Butz; Juliette M. K. M. Delhove; Susana Igreja; Harvinder S. Chahal; Vladimir Zivkovic; Tristan R. McKay; Attila Patócs; Ashley B. Grossman; Márta Korbonits

Collaboration


Dive into the Susana Igreja's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harvinder S. Chahal

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Márta Korbonits

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Gueorguiev

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Chrysanthia Leontiou

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Giampaolo Trivellin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Lolli

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge