Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susana Inoges is active.

Publication


Featured researches published by Susana Inoges.


Annals of Oncology | 2010

Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin's lymphoma

Maurizio Bendandi; S. Marillonnet; Romy Kandzia; F. Thieme; A. Nickstadt; S. Herz; R. Fröde; Susana Inoges; A. Lòpez-Dı̀az de Cerio; E. Soria; Helena Villanueva; G. Vancanneyt; Alison A. McCormick; D. Tusé; J. Lenz; J.-E. Butler-Ransohoff; Victor Klimyuk; Yuri Gleba

BACKGROUND Animal and clinical studies with plant-produced single-chain variable fragment lymphoma vaccines have demonstrated specific immunogenicity and safety. However, the expression levels of such fragments were highly variable and required complex engineering of the linkers. Moreover, the downstream processing could not be built around standard methods like protein A affinity capture. DESIGN We report a novel vaccine manufacturing process, magnifection, devoid of the above-mentioned shortcomings and allowing consistent and efficient expression in plants of whole immunoglobulins (Igs). RESULTS Full idiotype (Id)-containing IgG molecules of 20 lymphoma patients and 2 mouse lymphoma models were expressed at levels between 0.5 and 4.8 g/kg of leaf biomass. Protein A affinity capture purification yielded antigens of pharmaceutical purity. Several patient Igs produced in plants showed specific cross-reactivity with sera derived from the same patients immunized with hybridoma-produced Id vaccine. Mice vaccinated with plant- or hybridoma-produced Igs showed comparable protection levels in tumor challenge studies. CONCLUSIONS This manufacturing process is reliable and robust, the manufacturing time from biopsy to vaccine is <12 weeks and the expression and purification of antigens require only 2 weeks. The process is also broadly applicable for manufacturing monoclonal antibodies in plants, providing 50- to 1000-fold higher yields than alternative plant expression methods.


European Journal of Immunology | 2008

IL-10 suppressor activity and ex vivo Tr1 cell function are impaired in multiple sclerosis.

Ivan Martinez-Forero; Ricardo García-Muñoz; Sara Martinez-Pasamar; Susana Inoges; Ascensión López-Díaz de Cerio; Ricardo Palacios; Jorge Sepulcre; Beatriz Moreno; Zaira Gonzalez; Begoña Fernandez‐Diez; Ignacio Melero; Maurizio Bendandi; Pablo Villoslada

T regulatory cells type 1 (Tr1 cells) are excellent candidates for cell therapy in multiple sclerosis (MS). The aim of our study was to assess the functional state of Tr1 cells and IL‐10R signaling in patients with MS. Tr1 cells were induced in vitro by activation with anti‐CD46 antibodies in controls and patients with MS. Cells were phenotyped by cytometry and suppression assays, and the expression of cytokines and transcription factors was evaluated by real‐time PCR, ELISA, cytometry and Western blotting. We found that the activity of Tr1 cells and IL‐10R signaling is impaired in MS patients since Tr1 cells isolated from MS patients produced less IL‐10 than those obtained from controls. Indeed, the supernatants from Tr1 cells from controls did not suppress the proliferation of stimulated CD4+ cells from patients with MS. Furthermore, the IL‐10R signaling pathway was not fully active in CD4+ cells from MS patients and these cells had higher baseline levels of SOCS3 transcripts than controls. Indeed, after in vitro IL‐10 stimulation, the expression levels of the STAT1, STAT3 and IL‐10RA genes were higher in MS patients than in controls. Moreover, Stat‐3 phosphorylation was lower in controls than in patients after IL‐10 stimulation. These results indicate that IL‐10 regulatory function is impaired in patients with MS.


Journal of Biological Chemistry | 2007

Human Follicular Lymphoma Cells Contain Oligomannose Glycans in the Antigen-binding Site of the B-cell Receptor

Catherine M. Radcliffe; James N. Arnold; David M. Suter; Mark R. Wormald; David J. Harvey; Louise Royle; Yusuke Mimura; Yoshinobu Kimura; Robert B. Sim; Susana Inoges; Mercedes Rodriguez-Calvillo; Natalia Zabalegui; Ascensión López-Díaz de Cerio; Kathleeen N. Potter; C. Ian Mockridge; Raymond A. Dwek; Maurizio Bendandi; Pauline M. Rudd; Freda K. Stevenson

Expression of surface immunoglobulin appears critical for the growth and survival of B-cell lymphomas. In follicular lymphoma, we found previously that the Ig variable (V) regions in the B-cell receptor express a strikingly high incidence of N-glycosylation sequons, NX(S/T). These potential glycosylation sites are introduced by somatic mutation and are lymphoma-specific, pointing to their involvement in tumor pathogenesis. Analysis of the V region sugars from lymphoma-derived IgG/IgM reveals that they are mostly oligomannose and, remarkably, are located in the antigen-binding site, possibly precluding conventional antigen binding. The Fc region contains complex glycans, confirming that the normal glycan processing pathway is intact. Binding studies indicate that the oligomannose glycans occupying the V regions are accessible to mannose-binding lectin. These findings suggest a potential contribution to lymphoma pathogenesis involving antigen-independent interaction of surface immunoglobulin of the B-cell receptor with mannose-binding molecules of innate immunity in the germinal center.


Clinical Cancer Research | 2004

Imatinib Inhibits Proliferation of Ewing Tumor Cells Mediated by the Stem Cell Factor/KIT Receptor Pathway, and Sensitizes Cells to Vincristine and Doxorubicin-Induced Apoptosis

Iranzu González; Enrique J. Andreu; Angel Panizo; Susana Inoges; Ana Fontalba; Jose L. Fernandez-Luna; Mirella Gaboli; Luis Sierrasesúmaga; Salvador Martín-Algarra; Javier Pardo; Felipe Prosper; Enrique de Alava

Purpose and Experimental Design: The stem cell factor/KIT receptor loop may represent a novel target for molecular-based therapies of Ewing tumor. We analyzed the in vitro impact of KIT blockade by imatinib in Ewing tumor cell lines. Results: KIT expression was detected in 4 of 4 Ewing tumor cell lines and in 49 of 110 patient samples (44.5%) by immunohistochemistry and/or Western blot analysis. KIT expression was stronger in Ewing tumors showing EWS-FLI1 nontype 1 fusions. Despite absence of c-kit mutations, constitutive and ligand-inducible phosphorylation of KIT was found in all tumor cell lines, indicating an active receptor. Treatment with KIT tyrosine kinase inhibitor imatinib (0.5–20 μm) induced down-regulation of KIT phosphorylation and dose response inhibition of cell proliferation (IC50, 12–15 μm). However, imatinib administered alone at doses close to IC50 for growth inhibition (10 μm) did not induce a significant increase in apoptosis. We then analyzed if blockade of KIT loop through imatinib (10 μm) was able to increase the antitumor in vitro effect of doxorubicin (DXR) and vincristine (VCR), drugs usually used in Ewing tumor treatment. Addition of imatinib decreased in 15–20 and 15–36% of the proliferative rate of Ewing tumor cells exposed to DXR and VCR, respectively, and increased in 15 and 30% of the apoptotic rate of Ewing tumor cells exposed to the same drugs. Conclusions: Inhibition of Ewing tumor cell proliferation by imatinib is mediated through blockade of KIT receptor signaling. Inhibition of KIT increases sensitivity of these cells to DXR and VCR. This study supports a potential role for imatinib in the treatment of Ewing tumor.


Clinical Cancer Research | 2016

Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs)

Carlos Alfaro; Alvaro Teijeira; Carmen Oñate; Guiomar Perez; Miguel F. Sanmamed; Maria Pilar Andueza; Diego Alignani; Sara Labiano; Arantza Azpilikueta; Alfonso Rodriguez-Paulete; Saray Garasa; Juan Pablo Fusco; María Ángela Aznar; Susana Inoges; José Medina-Echeverz; Pedro Berraondo; Jose Luis Perez-Gracia; Ignacio Melero

Purpose: Myeloid-derived suppressor cells (MDSC) are considered an important T-cell immunosuppressive component in cancer-bearing hosts. The factors that attract these cells to the tumor microenvironment are poorly understood. IL8 (CXCL8) is a potent chemotactic factor for neutrophils and monocytes. Experimental Design: MDSC were characterized and sorted by multicolor flow cytometry on ficoll-gradient isolated blood leucokytes from healthy volunteers (n = 10) and advanced cancer patients (n = 28). In chemotaxis assays, sorted granulocytic and monocytic MDSC were tested in response to recombinant IL8, IL8 derived from cancer cell lines, and patient sera. Neutrophil extracellular traps (NETs) formation was assessed by confocal microscopy, fluorimetry, and time-lapse fluorescence confocal microscopy on short-term MDSC cultures. Results: IL8 chemoattracts both granulocytic (GrMDSC) and monocytic (MoMDSC) human MDSC. Monocytic but not granulocytic MDSC exerted a suppressor activity on the proliferation of autologous T cells isolated from the circulation of cancer patients. IL8 did not modify the T-cell suppressor activity of human MDSC. However, IL8 induced the formation of NETs in the GrMDSC subset. Conclusions: IL8 derived from tumors contributes to the chemotactic recruitment of MDSC and to their functional control. Clin Cancer Res; 22(15); 3924–36. ©2016 AACR.


Molecular therapy. Nucleic acids | 2013

CD28 Aptamers as Powerful Immune Response Modulators

Fernando Pastor; Mario Martínez Soldevilla; Helena Villanueva; Despina Kolonias; Susana Inoges; Ascensión López-Díaz de Cerio; Romy Kandzia; Victor Klimyuk; Yuri Gleba; Eli Gilboa; Maurizio Bendandi

CD28 is one of the main costimulatory receptors responsible for the proper activation of T lymphocytes. We have isolated two aptamers that bind to the CD28 receptor. As a monomer, one of them interfered with the binding of CD28 to its ligand (B7), precluding the costimulatory signal, whereas the other one was inactive. However, dimerization of any of the anti-CD28 aptamers was sufficient to provide an artificial costimulatory signal. No antibody has featured a dual function (i.e., the ability to work as agonist and antagonist) to date. Two different agonistic structures were engineered for each anti-CD28 aptamer. One showed remarkably improved costimulatory properties, surpassing the agonistic effect of an anti-CD28 antibody. Moreover, we showed in vivo that the CD28 agonistic aptamer is capable of enhancing the cellular immune response against a lymphoma idiotype and of prolonging survival of mice which receive the aptamer together with an idiotype vaccine. The CD28 aptamers described in this work could be used to modulate the immune response either blocking the interaction with B7 or enhancing vaccine-induced immune responses in cancer immunotherapy.


Experimental Hematology | 2002

Clinical implications of antigen transfer mechanisms from malignant to dendritic cells: Exploiting cross-priming

Ainhoa Arina; Iñigo Tirapu; Carlos Alfaro; Mercedes Rodriguez-Calvillo; Guillermo Mazzolini; Susana Inoges; Ascensión López; Esperanza Feijoo; Maurizio Bendandi; Ignacio Melero

Expansion and activation of cytolytic T lymphocytes bearing high-affinity T-cell receptors specific for tumor antigens is a major goal of active cancer immunotherapy. Physiologically, T cells receive promitotic and activating signals from endogenous professional antigen-presenting cells (APC) rather than directly from malignant cells. This phenomenon fits with the broader concept of cross-presentation that earlier was demonstrated for minor histocompatibility and viral antigens. Many mechanisms have been found to be capable of transferring antigenic material from malignant cells to APC so that it can be processed and subsequently presented by MHC class I molecules expressed on APC. Dendritic cells (DC) are believed to be the most relevant APC mediating cross-presentation because they can take up antigens from apoptotic, necrotic, and even intact tumor cells. There exist specific molecular mechanisms that ensure this transfer of antigenic material: 1) opsonization of apoptotic bodies; 2) receptors for released heat shock proteins carrying peptides processed intracellularly; 3) Fc receptors that uptake immunocomplexes and immunoglobulins; and 4) pinocytosis. DC have the peculiar capability of reentering the exogenously captured material into the MHC class I pathway. Exploitation of these pieces of knowledge is achieved by providing DC with complex mixtures of tumor antigens ex vivo and by agents and procedures that promote infiltration of malignant tissue by DC. The final outcome of DC cross-presentation could be T-cell activation (cross-priming) but also, and importantly, T-cell tolerance contingent upon the activation/maturation status of DC. Artificial enhancement of tumor antigen cross-presentation and control of the immune-promoting status of the antigen-presenting DC will have important therapeutic implications in the near future.


Immunology and Cell Biology | 2017

Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells

Maria C. Ochoa; Luna Minute; Inmaculada Rodriguez; Saray Garasa; Elisabeth Perez-Ruiz; Susana Inoges; Ignacio Melero; Pedro Berraondo

Antibody‐dependent cellular cytotoxicity (ADCC) is a set of mechanisms that target cells coated with IgG antibodies of the proper subclasses (IgG1 in the human) to be the prey of cell‐to‐cell cytolysis executed by immune cells expressing FcRIIIA (CD16A). These effectors include not only natural killer (NK) cells but also other CD16+ subsets such as monocyte/macrophages, NKT cells or γδ T cells. In cancer therapy, ADCC is exploited by antibodies that selectively recognize proteins on the surface of malignant cells. An approach to enhance antitumor activity is to act on effector cells so they are increased in their numbers or enhanced in their individual (on a cell per cell basis) ADCC performance. This enhancement can be therapeutically attained by cytokines (that is, interleukin (IL)‐15, IL‐21, IL‐18, IL‐2); immunostimulatory monoclonal antibodies (that is, anti‐CD137, anti‐CD96, anti‐TIGIT, anti‐KIR, anti‐PD‐1); TLR agonists or by adoptive infusions of ex vivo expanded NK cells which can be genetically engineered to become more efficient effectors. In conjunction with approaches optimizing IgG1 Fc affinity to CD16, acting on effector cells offers hope to achieve synergistic immunotherapy strategies.


Leukemia & Lymphoma | 2009

Prolonged idiotypic vaccination against follicular lymphoma.

Susana Inoges; Ascensión López-Díaz de Cerio; Natalia Zabalegui; Elena Soria; Helena Villanueva; Carlos Panizo; Arancha Rodríguez-Caballero; Lilia Suarez; Fernando Pastor; Mercedes Rodriguez-Calvillo; Alberto Orfao; Maurizio Bendandi

During the last 2 decades, idiotypic vaccination has provided proof of principle of biological efficacy, clinical efficacy and clinical benefit in small follicular lymphoma trials. However, with the exception of anecdotal reports, most patients have received no more than 10 doses of their customised idiotype (Id) vaccine. Therefore, it is not known whether prolonged usage of idiotypic vaccination is safe. Since 2002, 18 previously treated patients with follicular lymphoma have received extended idiotypic vaccination at our institution outside clinical trials. Vaccination was provided as a compassionate alternative to no further treatment, and was meant to be stopped only upon complete consumption of the available patient- and tumor-specific vaccine [Id-keyhole limpet hemocyanin + granulocyte-macrophage colony-stimulating factor (Id-KLH + GM-CSF)], or in case of disease relapse or any serious non-local toxicity. So far, 18 patients have received an average of 18 doses of Id vaccine (median: 17; mean: 18; range: 10–31). Eleven patients are still actively receiving idiotypic vaccination: some of them are now over more than 6 years. Toxicity has been systematically negligible and mostly local. No patient has abandoned the vaccination program because of toxicity. Prolonged idiotypic vaccination with the soluble protein Id-KLH + GM-CSF formulation is safe and well tolerated.


Oncotarget | 2016

MRP1-CD28 bi-specific oligonucleotide aptamers: target costimulation to drug-resistant melanoma cancer stem cells.

Mario Martínez Soldevilla; Helena Villanueva; Noelia Casares; Juan José Lasarte; Maurizio Bendandi; Susana Inoges; Ascensión López-Díaz de Cerio; Fernando Pastor

In this work we show a clinically feasible strategy to convert in situ the own tumor into an endogenous vaccine by coating the melanoma cancerous cells with CD28 costimulatory ligands. This therapeutic approach is aimed at targeting T-cell costimulation to chemotherapy-resistant tumors which are refractory and been considered as untreatable cancers. These tumors are usually defined by an enrichment of cancer stem cells and characterized by the higher expression of chemotherapy-resistant proteins. In this work we develop the first aptamer that targets chemotherapy-resistant tumors expressing MRP1 through a novel combinatorial peptide-cell SELEX. With the use of the MRP1 aptamer we engineer a MRP1-CD28 bivalent aptamer that is able to bind MRP1-expressing tumors and deliver the CD28 costimulatory signal to tumor-infiltrating lymphocytes. The bi-specific aptamer is able to enhance costimulation in chemotherapy-resistant tumors. Melanoma-bearing mice systemically treated with MRP1-CD28 bivalent aptamer show reduced growth, thus proving an improved mice survival. Besides, we have designed a technically feasible and translational whole-cell vaccine (Aptvax). Disaggregated cells from tumors can be directly decorated with costimulatory ligand aptamers to generate the vaccine Aptvax. CD28Aptvax made of irradiated tumor cells coated with the CD28-agonistic aptamer attached to MRP1 elicits a strong tumor- cell immune response against melanoma tumors reducing tumor growth.

Collaboration


Dive into the Susana Inoges's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge