Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susana Loureiro is active.

Publication


Featured researches published by Susana Loureiro.


Environmental Toxicology and Chemistry | 2012

METAL-BASED NANOPARTICLES IN SOIL: FATE, BEHAVIOR, AND EFFECTS ON SOIL INVERTEBRATES

Paula S. Tourinho; Cornelis A.M. van Gestel; Stephen Lofts; Claus Svendsen; Amadeu M.V.M. Soares; Susana Loureiro

Metal-based nanoparticles (NPs) (e.g., silver, zinc oxide, titanium dioxide, iron oxide) are being widely used in the nanotechnology industry. Because of the release of particles from NP-containing products, it is likely that NPs will enter the soil compartment, especially through land application of sewage sludge derived from wastewater treatment. This review presents an overview of the literature dealing with the fate and effects of metal-based NPs in soil. In the environment, the characteristics of NPs (e.g., size, shape, surface charge) and soil (e.g., pH, ionic strength, organic matter, and clay content) will affect physical and chemical processes, resulting in NP dissolution, agglomeration, and aggregation. The behavior of NPs in soil will control their mobility and their bioavailability to soil organisms. Consequently, exposure characterization in ecotoxicological studies should obtain as much information as possible about dissolution, agglomeration, and aggregation processes. Comparing existing studies is a challenging task, because no standards exist for toxicity tests with NPs. In many cases, the reporting of associated characterization data is sparse, or missing, making it impossible to interpret and explain observed differences in results among studies.


Science of The Total Environment | 2014

Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio

Fabianne Ribeiro; Julián Alberto Gallego-Urrea; Kerstin Jurkschat; Alison Crossley; Martin Hassellöv; Cameron Taylor; Amadeu M.V.M. Soares; Susana Loureiro

Silver nanoparticles (AgNP) have gained attention over the years due to the antimicrobial function of silver, which has been exploited industrially to produce consumer goods that vary in type and application. Undoubtedly the increase of production and consumption of these silver-containing products will lead to the entry of silver compounds into the environment. In this study we have used Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio as model organisms to investigate the toxicity of AgNP and AgNO₃ by assessing different biological endpoints and exposure periods. Organisms were exposed following specific and standardized protocols for each species/endpoints, with modifications when necessary. AgNP were characterized in each test-media by Transmission Electron Microscopy (TEM) and experiments were performed by Dynamic Light Scattering (DLS) to investigate the aggregation and agglomeration behavior of AgNP under different media chemical composition and test-period. TEM images of AgNP in the different test-media showed dissimilar patterns of agglomeration, with some agglomerates inside an organic layer, some loosely associated particles and also the presence of some individual particles. The toxicity of both AgNO₃ and AgNP differ significantly based on the test species: we found no differences in toxicity for algae, a small difference for zebrafish and a major difference in toxicity for Daphnia magna.


Science of The Total Environment | 2010

Interactions between toxic chemicals and natural environmental factors — A meta-analysis and case studies

Ryszard Laskowski; Agnieszka J. Bednarska; Paulina Kramarz; Susana Loureiro; Volker Scheil; Joanna Kudłek; Martin Holmstrup

The paper addresses problems arising from effects of natural environmental factors on toxicity of pollutants to organisms. Most studies on interactions between toxicants and natural factors, including those completed in the EU project NoMiracle (Novel Methods for Integrated Risk Assessment of Cumulative Stressors in Europe) described herein, showed that effects of toxic chemicals on organisms can differ vastly depending purely on external conditions. We compiled data from 61 studies on effects of temperature, moisture and dissolved oxygen on toxicity of a range of chemicals representing pesticides, polycyclic aromatic hydrocarbons, plant protection products of bacterial origin and trace metals. In 62.3% cases significant interactions (p< or =0.05 or less) between natural factors and chemicals were found, reaching 100% for the effect of dissolved oxygen on toxicity of waterborne chemicals. The meta-analysis of the 61 studies showed that the null hypothesis assuming no interactions between toxic chemicals and natural environmental factors should be rejected at p=2.7 x 10(-82) (truncated product method probability). In a few cases of more complex experimental designs, also second-order interactions were found, indicating that natural factors can modify interactions among chemicals. Such data emphasize the necessity of including information on natural factors and their variation in time and across geographic regions in ecological risk assessment. This can be done only if appropriate ecotoxicological test designs are used, in which test organisms are exposed to toxicants at a range of environmental conditions. We advocate designing such tests for the second-tier ecological risk assessment procedures.


Aquatic Toxicology | 2009

Fear and loathing in the benthos: Responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk.

João L.T. Pestana; Susana Loureiro; Donald J. Baird; Amadeu M.V.M. Soares

The influence of interactions between pesticide exposure and perceived predation risk on the lethal and sub-lethal responses of two aquatic insects was investigated using the pesticide imidacloprid, and a combination of predator-release kairomones from trout and alarm substances from conspecifics. Laboratory experiments examined feeding and respiration rates of the caddisfly Sericostoma vittatum as well as the growth, emergence and respiration rates of the midge Chironomus riparius, exposed to sub-lethal concentrations of imidacloprid. The effects of the two stressors on burrowing behaviour of both species were also assessed. The results show significant effects of environmentally relevant concentrations of imidacloprid on all endpoints studied. Perceived predation risk also elicited sub-lethal effects in C. riparius and S. vittatum, the latter species being less responsive to predation cues. The effects of simultaneous exposure to both types of stressors were assessed using two different approaches: analysis of variance and conceptual models [concentration addition (CA) and independent action (IA)] normally used for the evaluation of contaminant mixture exposure. Both statistical approaches showed no significant interactions on responses in simultaneous exposures in the majority of parameters assessed with only a signification deviation from the reference CA and IA models being found for C. riparius respiration data contrary to the ANOVA results. Exposure to imidacloprid also compromised antipredator behavioural responses of both insect species, with potential negative consequences in terms of mortality from predation in the field. The results obtained demonstrate that natural and anthropogenic stressors can be treated within the same framework providing compatible data for modelling. For an improved interpretation of ecological effects it will be important to expand the mechanistic study of effects of combined exposure to pesticides and perceived predation risk by measuring different endpoints over a wider range of pesticide concentrations.


Environmental Pollution | 2009

Assessing joint toxicity of chemicals in Enchytraeus albidus (Enchytraeidae) and Porcellionides pruinosus (Isopoda) using avoidance behaviour as an endpoint.

Susana Loureiro; Mónica J.B. Amorim; Bruno Campos; Sandra M.G. Rodrigues; Amadeu M.V.M. Soares

Contamination problems are often characterized by complex mixtures of chemicals. There are two conceptual models usually used to evaluate patterns of mixture toxicity: Concentration Addition (CA) and Independent Action (IA). Deviations from these models as synergism, antagonism and dose dependency also occur. In the present study, single and mixture toxicity of atrazine, dimethoate, lindane, zinc and cadmium were tested in Porcellionides pruinosus and Enchytraeus albidus, using avoidance as test parameter. For both species patterns of antagonism were found when exposed to dimethoate and atrazine, synergism for lindane and dimethoate exposures (with the exception of lower doses in the isopod case study) and concentration addition for cadmium and zinc occurred, while the exposure to cadmium and dimethoate showed dissimilar patterns. This study highlights the importance of dose dependencies when testing chemical mixtures and that avoidance tests can also be used to asses the effects of mixture toxicity.


Environmental Toxicology and Chemistry | 2010

Toxicity of three binary mixtures to Daphnia magna: Comparing chemical modes of action and deviations from conceptual models

Susana Loureiro; Claus Svendsen; Abel L.G. Ferreira; Clara Pinheiro; Fabianne Ribeiro; Amadeu M.V.M. Soares

Complex mixtures makes the assessment of environmental hazards difficult due to possible antagonistic or synergistic interactions that can occur between chemicals, or even more complex effect patterns like dose-level or dose-ratio-dependent responses. The aim of the present work was to investigate the acute and sublethal responses of Daphnia magna Straus exposed to four single chemical compounds (imidacloprid, thiacloprid, nickel chloride, and chlorpyrifos) and three binary chemical mixtures. In the immobilization and feeding inhibition bioassays, chlorpyrifos was the most toxic to D. magna, followed by nickel chloride, and imidacloprid and thiacloprid, which showed similar levels of toxicity. The MIXTOX was used to evaluate mixture toxicity. Observed data was compared with the expected mixture effects predicted by concentration addition (CA) and independent action (IA) models; deviations for synergistic/antagonistic interactions, dose-level and dose-ratio dependency were also used. In the mixture toxicity assessment, several patterns of response were obtained depending on the mixture but also on the endpoint tested. For imidacloprid and thiacloprid, deviations for synergism were observed in acute exposures (immobilization), and antagonism for feeding rates at sublethal concentrations. For imidacloprid and chlorpyrifos, antagonism was found in both exposures. In the nickel and chlorpyrifos case study, deviations for synergism were observed in the acute exposure; a dose-ratio deviation was observed in the feeding inhibition test, with a pattern for antagonism, except for where nickel exerts more than 60% of the mixture toxicity.


Ecotoxicology and Environmental Safety | 2011

Effects of binary mixtures on the life traits of Daphnia magna

Maria D. Pavlaki; Ricardo Pereira; Susana Loureiro; Amadeu M.V.M. Soares

The environment is constantly exposed to a cocktail of contaminants mainly due to human activities. Because polluted ecosystems are characterized by an amalgam of chemical compounds, the objective of the present study was to assess the joint effect of chemical mixtures to the life--history traits of Daphnia magna Straus. For that a binary mixture of two neonicotinoid insecticides, imidacloprid and thiacloprid, and another one of imidacloprid with nickel chloride were tested. Theoretical models have been developed and applied in studies with chemical mixtures, predicting toxicity based on their modes of action: concentration addition (CA) and independent joint action (IA) models. Still there are cases where deviations are observed (e.g. synergistic or antagonistic behaviors, dose ratio or level dependency). In this study, the effects of the individual compounds and their mixtures were studied in a chronic test where reproduction, survival and body length were evaluated in D. magna. Regarding single compound effects, it was observed that the most toxic was nickel chloride followed by thiacloprid and imidacloprid. For the mixture exposure of imidacloprid and thiacloprid, a synergistic pattern was observed in the sublethal doses used for the number of neonates produced, while for the body length the best fit was shown with the CA model. In the mixture exposure of imidacloprid and nickel, no deviation from the IA was observed for the neonate production data; for the body length parameter, a synergistic pattern was observed in low doses of the chemicals while an antagonistic pattern was observed.


Ecotoxicology | 2004

Ring-testing and field-validation of a terrestrial model ecosystem (TME) - An instrument for testing potentially harmful substances: effects of carbendazim on soil microbial parameters.

J. Paulo Sousa; José M.L. Rodrigues; Susana Loureiro; Amadeu M.V.M. Soares; Susan E. Jones; Bernhard Förster; Cornelis A.M. van Gestel

The effects of the fungicide carbendazim (applied in the formulation Derosal) on soil microarthropod communities was determined in three Terrestrial Model Ecosystem (TME) tests and a field-validation study for a period of 16 weeks after application. TMEs consisted of intact soil columns (diameter 17.5 cm; length 40 cm) taken from a grassland field. The TMEs for the two tests (pre-test and ring-test) in Amsterdam, The Netherlands, were taken from the same site where the field-validation study was performed, the third TME test (pre-test) was performed in Bangor, Wales. Collembola communities showed large variations in numbers and no effects of carbendazim on species diversity were seen. Mites were not determined to species but only to four main taxonomic groups (Astigmata, Cryptostigmata, Mesostigmata, Prostigmata). Mite numbers in both TME and field soils also showed rather large variations and it was difficult to find consistent effects of carbendazim treatment. Principal response curve (PRC) analysis was performed to further evaluate effects of carbendazim on Collembola and mites in the TME and field tests. This multivariate technique demonstrated significant effects of carbendazim on Collembola communities in one TME test and the field-validation study but not in the other two TME tests, while mite communities showed significant effects in two TME tests but not in the third TME test and the field-validation study. NOECs for the effect of carbendazim on Collembola and mite communities derived from these PRC analyses ranged from 0.36 to 87.5 kg a.i./ha.


Environmental Science and Pollution Research | 2013

Synergistic effects caused by atrazine and terbuthylazine on chlorpyrifos toxicity to early-life stages of the zebrafish Danio rerio

Joanne Pérez; Inês Domingues; Marta S. Monteiro; Amadeu M.V.M. Soares; Susana Loureiro

This study examined the effects of three widely used pesticides that have been previously detected in aquatic systems neighbouring agricultural fields on the early-life stages of the zebrafish Danio rerio. Tests involving single exposures and binary combinations of the s-triazine herbicides (atrazine and terbuthylazine) and the organophosphate insecticide chlorpyrifos were performed. Several endpoints, such as swimming behaviour, morphological abnormalities and mortality, were studied. In addition, the inhibition of acetylcholinesterase (AChE) activity was investigated in order to evaluate the mode of action and toxicity of chlorpyrifos in the presence of these herbicides. Results indicate that both binary mixtures elicited synergistic responses on the swimming behaviour of zebrafish larvae. Moreover, although the herbicides were not effective inhibitors of the AChE on their own, a synergistic inhibition of the enzyme activity was obtained by exposure to mixtures with chlorpyrifos. We observed a correlation between impairment of swimming behaviour of the larvae and inhibition of AChE activity. This study supports previous studies concerning the risk assessment of mixtures since the toxicity may be underestimated when looking only at the single toxicants and not their mixtures.


Ecotoxicology and Environmental Safety | 2011

Evaluation of the joint effect of glyphosate and dimethoate using a small-scale terrestrial ecosystem.

Miguel J.G. Santos; Rui Morgado; Nuno G.C. Ferreira; Amadeu M.V.M. Soares; Susana Loureiro

In the present work a small-scale terrestrial ecosystem (STEM) containing a soil collected from an agricultural field in Central Portugal was used to evaluate the effects of the combination of the herbicide glyphosate and the insecticide dimethoate. Earthworms (Eisenia andrei), isopods (Porcellionides pruinosus), turnip seeds (Brassica rapa), and bait-lamina strips were placed in the STEM. The results showed that the application of the recommended field dose of both pesticides did not cause any effect on the weight variation of earthworms and growth of the plants. The application of the herbicide, even at 5 and 10 times the field dose, increased feeding activity in soil (bait-lamina test), although the application of dimethoate led to a decrease in feeding activity in all concentrations tested. The binary mixtures performed showed that according to the Independent Action model, synergism (higher effect than expected from the single exposures) was observed in both the shoot length and fresh weight of B. rapa at 5 times the field dose, but antagonism was observed at 10 times the field dose. Regarding the germination success, synergism was observed at the field dose, but antagonism was detected at 5 times and 10 times the field dose. There was a decrease on the earthworms weight in all concentrations tested, although no statistical differences were observed in any of the treatments made. Regarding depth distribution of E. andrei, worms were found in the upper layer more than it was predicted for all concentrations. In the mixtures with the field and 5 times the field dose there was a decrease in the feeding activity (bait-lamina consumption) by the soil fauna. From the four biomarkers assessed on the isopods (Catalase, Acetylcholinesterase, Glutathione-S-transferase, and Lipid peroxidation), only a significant decrease in the Acetylcholinesterase activity upon dimethoate and the binary mixtures exposures performed with the field dose was observed and on Lipid peroxidation at the field doses of single and binary exposures.

Collaboration


Dive into the Susana Loureiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henriqueta Louro

Instituto Nacional de Saúde Dr. Ricardo Jorge

View shared research outputs
Researchain Logo
Decentralizing Knowledge