Susana Molina
IMDEA
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susana Molina.
Pharmacological Research | 2013
Margarita González-Vallinas; Susana Molina; Gonzalo Vicente; Ana de la Cueva; Teodoro Vargas; Susana Santoyo; Mónica R. García-Risco; Tiziana Fornari; Guillermo Reglero; Ana Ramírez de Molina
5-Fluorouracil (5-FU) is the most used chemotherapeutic agent in colorectal cancer. However, resistance to this drug is relatively frequent, and new strategies to overcome it are urgently needed. The aim of this work was to determine the antitumor properties of a supercritical fluid rosemary extract (SFRE), alone and in combination with 5-FU, as a potential adjuvant therapy useful for colon cancer patients. This extract has been recognized as a healthy component by the European Food Safety Authority (EFSA). The effects of SFRE both alone and in combination with 5-FU were evaluated in different human colon cancer cells in terms of cell viability, cytotoxicity, and cell transformation. Additionally, colon cancer cells resistant to 5-FU were used to assay the effects of SFRE on drug resistance. Finally, qRT-PCR was performed to ascertain the mechanism by which SFRE potentiates the effect of 5-FU. Our results show that SFRE displays dose-dependent antitumor activities and exerts a synergistic effect in combination with 5-FU on colon cancer cells. Furthermore, SFRE sensitizes 5-FU-resistant cells to the therapeutic activity of this drug, constituting a beneficial agent against both 5-FU sensitive and resistant tumor cells. Gene expression analysis indicates that the enhancement of the effect of 5-FU by SFRE might be explained by the downregulation of TYMS and TK1, enzymes related to 5-FU resistance.
PLOS ONE | 2014
Margarita González-Vallinas; Susana Molina; Gonzalo Vicente; Virginia Zarza; Roberto Martín-Hernández; Mónica R. García-Risco; Tiziana Fornari; Guillermo Reglero; Ana Ramírez de Molina
Colorectal and pancreatic cancers remain important contributors to cancer mortality burden and, therefore, new therapeutic approaches are urgently needed. Rosemary (Rosmarinus officinalis L.) extracts and its components have been reported as natural potent antiproliferative agents against cancer cells. However, to potentially apply rosemary as a complementary approach for cancer therapy, additional information regarding the most effective composition, its antitumor effect in vivo and its main molecular mediators is still needed. In this work, five carnosic acid-rich supercritical rosemary extracts with different chemical compositions have been assayed for their antitumor activity both in vivo (in nude mice) and in vitro against colon and pancreatic cancer cells. We found that the antitumor effect of carnosic acid together with carnosol was higher than the sum of their effects separately, which supports the use of the rosemary extract as a whole. In addition, gene and microRNA expression analyses have been performed to ascertain its antitumor mechanism, revealing that up-regulation of the metabolic-related gene GCNT3 and down-regulation of its potential epigenetic modulator miR-15b correlate with the antitumor effect of rosemary. Moreover, plasmatic miR-15b down-regulation was detected after in vivo treatment with rosemary. Our results support the use of carnosic acid-rich rosemary extract as a complementary approach in colon and pancreatic cancer and indicate that GCNT3 expression may be involved in its antitumor mechanism and that miR-15b might be used as a non-invasive biomarker to monitor rosemary anticancer effect.
Oncotarget | 2015
Ruth Sánchez-Martínez; Silvia Cruz-Gil; Marta Gómez de Cedrón; Mónica Álvarez-Fernández; Teodoro Vargas; Susana Molina; Belén García; Jesús Herranz; Guillermo Reglero; Mirna Perez-Moreno; Jaime Feliu; Marcos Malumbres; Ana Ramírez de Molina
The alterations in carbohydrate metabolism that fuel tumor growth have been extensively studied. However, other metabolic pathways involved in malignant progression, demand further understanding. Here we describe a metabolic acyl-CoA synthetase/stearoyl-CoA desaturase ACSL/SCD network causing an epithelial-mesenchymal transition (EMT) program that promotes migration and invasion of colon cancer cells. The mesenchymal phenotype produced upon overexpression of these enzymes is reverted through reactivation of AMPK signaling. Furthermore, this network expression correlates with poorer clinical outcome of stage-II colon cancer patients. Finally, combined treatment with chemical inhibitors of ACSL/SCD selectively decreases cancer cell viability without reducing normal cells viability. Thus, ACSL/SCD network stimulates colon cancer progression through conferring increased energetic capacity and invasive and migratory properties to cancer cells, and might represent a new therapeutic opportunity for colon cancer treatment.
Journal of Clinical Microbiology | 2008
Diana Pisa; Marta Ramos; Patricia García; Remberto Escoto; Rafael I. Barraquer; Susana Molina; Luis Carrasco
ABSTRACT The etiologies of a number of retinopathies, including serpiginous choroiditis and acute zonal occult outer retinopathy (AZOOR), remain uncertain. Recently, we provided evidence that AZOOR is caused by Candida famata infection. The purpose of this article was to investigate the presence of fungal infection in five patients affected with serpiginous choroiditis and five patients with diagnosis of AZOOR. To assess the presence of fungal infection the presence of antibodies in human serum samples against C. famata, C. albicans, C. parapsilosis, C. glabrata and C. krusei was analyzed. In addition, quantitative PCR was carried out to detect fungal genomes in whole blood. Finally, the presence of fungal antigens in the serum samples of patients was investigated. Three AZOOR patients presented high antibody titers against Candida spp., while antibodies against Candida spp. were observed in serum samples from four patients with serpiginous choroiditis. Fungal genomes in peripheral blood were evidenced in serum samples from one AZOOR and four serpiginous choroiditis patients. Fungal antigens were also apparent in the serum of different patients. Our findings indicate that there was evidence of disseminated fungal infection in most patients examined.
PLOS ONE | 2014
Juan-María Torres; Juan-Carlos Espinosa; Patricia Aguilar-Calvo; María-Eugenia Herva; Aroa Relaño-Ginés; Ana Villa-Diaz; Mónica Morales; Beatriz Parra; Elia Alamillo; Alejandro Brun; Joaquín Castilla; Susana Molina; S. A. C. Hawkins; Olivier Andreoletti
The specific characteristics of Transmissible Spongiform Encephalopathy (TSE) strains may be altered during passage across a species barrier. In this study we investigated the biochemical and biological characteristics of Bovine Spongiform Encephalopathy (BSE) after transmission in both natural host species (cattle, sheep, pigs and mice) and in transgenic mice overexpressing the corresponding cellular prion protein (PrPC) in comparison with other non-BSE related prions from the same species. After these passages, most features of the BSE agent remained unchanged. BSE-derived agents only showed slight modifications in the biochemical properties of the accumulated PrPSc, which were demonstrated to be reversible upon re-inoculation into transgenic mice expressing bovine-PrPC. Transmission experiments in transgenic mice expressing bovine, porcine or human-PrP revealed that all BSE-derived agents were transmitted with no or a weak transmission barrier. In contrast, a high species barrier was observed for the non-BSE related prions that harboured an identical PrP amino acid sequence, supporting the theory that the prion transmission barrier is modulated by strain properties (presumably conformation-dependent) rather than by PrP amino acid sequence differences between host and donor. As identical results were observed with prions propagated either in natural hosts or in transgenic mouse models, we postulate that the species barrier and its passage consequences are uniquely governed by the host PrPC sequence and not influenced by other host genetic factors. The results presented herein reinforce the idea that the BSE agent is highly promiscuous, infecting other species, maintaining its properties in the new species, and even increasing its capabilities to jump to other species including humans. These data are essential for the development of an accurate risk assessment for BSE.
Journal of Pharmacology and Experimental Therapeutics | 2015
Ana Ramírez de Molina; Teodoro Vargas; Susana Molina; Jenifer Sánchez; Jorge Martínez-Romero; Margarita González-Vallinas; Roberto Martín-Hernández; Ruth Sánchez-Martínez; Marta Gómez de Cedrón; Alberto Dávalos; Luca Calani; Daniele Del Rio; Antonio González-Sarrías; Juan Carlos Espín; Francisco A. Tomás-Barberán; Guillermo Reglero
Ellagic acid (EA) and some derivatives have been reported to inhibit cancer cell proliferation, induce cell cycle arrest, and modulate some important cellular processes related to cancer. This study aimed to identify possible structure-activity relationships of EA and some in vivo derivatives in their antiproliferative effect on both human colon cancer and normal cells, and to compare this activity with that of other polyphenols. Our results showed that 4,4′-di-O-methylellagic acid (4,4′-DiOMEA) was the most effective compound in the inhibition of colon cancer cell proliferation. 4,4′-DiOMEA was 13-fold more effective than other compounds of the same family. In addition, 4,4′-DiOMEA was very active against colon cancer cells resistant to the chemotherapeutic agent 5-fluoracil, whereas no effect was observed in nonmalignant colon cells. Moreover, no correlation between antiproliferative and antioxidant activities was found, further supporting that structure differences might result in dissimilar molecular targets involved in their differential effects. Finally, microarray analysis revealed that 4,4′-DiOMEA modulated Wnt signaling, which might be involved in the potential antitumor action of this compound. Our results suggest that structural-activity differences between EA and 4,4′-DiOMEA might constitute the basis for a new strategy in anticancer drug discovery based on these chemical modifications.
Molecular Oncology | 2014
Teodoro Vargas; Jesús Herranz; Paloma Cejas; Susana Molina; Margarita González-Vallinas; Ricardo Ramos; Emilio Burgos; Cristina Aguayo; Ana Custodio; Guillermo Reglero; Jaime Feliu; Ana Ramírez de Molina
Studies have recently suggested that metabolic syndrome and its components increase the risk of colorectal cancer. Both diseases are increasing in most countries, and the genetic association between them has not been fully elucidated. The objective of this study was to assess the association between genetic risk factors of metabolic syndrome or related conditions (obesity, hyperlipidaemia, diabetes mellitus type 2) and clinical outcome in stage II colorectal cancer patients. Expression levels of several genes related to metabolic syndrome and associated alterations were analysed by real‐time qPCR in two equivalent but independent sets of stage II colorectal cancer patients. Using logistic regression models and cross‐validation analysis with all tumour samples, we developed a metabolic syndrome‐related gene expression profile to predict clinical outcome in stage II colorectal cancer patients. The results showed that a gene expression profile constituted by genes previously related to metabolic syndrome was significantly associated with clinical outcome of stage II colorectal cancer patients. This metabolic profile was able to identify patients with a low risk and high risk of relapse. Its predictive value was validated using an independent set of stage II colorectal cancer patients. The identification of a set of genes related to metabolic syndrome that predict survival in intermediate‐stage colorectal cancer patients allows delineation of a high‐risk group that may benefit from adjuvant therapy and avoid the toxic and unnecessary chemotherapy in patients classified as low risk. Our results also confirm the linkage between metabolic disorder and colorectal cancer and suggest the potential for cancer prevention and/or treatment by targeting these genes.
Electrophoresis | 2014
Margarita González-Vallinas; Susana Molina; Gonzalo Vicente; Ruth Sánchez-Martínez; Teodoro Vargas; Mónica R. García-Risco; Tiziana Fornari; Guillermo Reglero; Ana Ramírez de Molina
Breast cancer is the leading cause of cancer‐related mortality among females worldwide, and therefore the development of new therapeutic approaches is still needed. Rosemary (Rosmarinus officinalis L.) extract possesses antitumor properties against tumor cells from several organs, including breast. However, in order to apply it as a complementary therapeutic agent in breast cancer, more information is needed regarding the sensitivity of the different breast tumor subtypes and its effect in combination with the currently used chemotherapy. Here, we analyzed the antitumor activities of a supercritical fluid rosemary extract (SFRE) in different breast cancer cells, and used a genomic approach to explore its effect on the modulation of ER‐α and HER2 signaling pathways, the most important mitogen pathways related to breast cancer progression. We found that SFRE exerts antitumor activity against breast cancer cells from different tumor subtypes and the downregulation of ER‐α and HER2 receptors by SFRE might be involved in its antitumor effect against estrogen‐dependent (ER+) and HER2 overexpressing (HER2+) breast cancer subtypes. Moreover, SFRE significantly enhanced the effect of breast cancer chemotherapy (tamoxifen, trastuzumab, and paclitaxel). Overall, our results support the potential utility of SFRE as a complementary approach in breast cancer therapy.
European Journal of Cancer | 2015
Margarita González-Vallinas; Teodoro Vargas; Susana Molina; Jesús Herranz; Paloma Cejas; Emilio Burgos; Cristina Aguayo; Ana Custodio; Guillermo Reglero; Jaime Feliu; Ana Ramírez de Molina
Altered glycosylation is considered a universal cancer hallmark. Mucin-type core 2 1,6-N-acetylglucosaminyltransferase enzyme (C2GnT-M), encoded by the GCNT3 gene, has been reported to be altered in tumours and to possess tumour suppressor properties. In this work, we aimed to determine the possible role of GCNT3 gene expression as prognostic marker in colon cancer. We investigated the differential expression of GCNT3 gene among tumour samples from stage II colon cancer patients by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Univariate and Multivariate Cox regression analyses were used to determine the correlation between GCNT3 expression and disease-free survival. The risk of relapse in GCNT3 low-expressing cancer patients was significantly higher than that in GCNT3 high-expressing patients in both training (Hazard Ratio (HR) 4.26, p=0.002) and validation (HR 3.06, p=0.024) series of patients, and this association was independent of clinical factors. Additionally, qRT-PCR was used to explore the modulation of GCNT3 expression by different antitumour drugs. Three chemotherapeutic agents with different mechanism of action (5-fluorouracil, bortezomib and paclitaxel) significantly induced GCNT3 expression in several cancer cells, being observed the correlation between antitumour action and GCNT3 modulation, whereas this gene was not modulated in cells that do not respond to treatment. Overall, these results indicate that low GCNT3 expression is a promising prognostic biomarker for colon cancer that could be used to identify early-stage colon cancer patients at high risk of relapse. Additionally, our results suggest that this enzyme might also constitute a biomarker to monitor tumour response to chemotherapy in cancer patients.
Chemistry and Physics of Lipids | 2013
Susana Molina; María I. Morán-Valero; Diana Martin; Luis Vázquez; Teodoro Vargas; Carlos F. Torres; A. Ramirez de Molina; Guillermo Reglero
The anticarcinogenic activity of synthetic 1-O-octadecyl-2,3-dibutyroilglycerol (D-SCAKG) in tumor-cell line of colonocytes (SW620) was performed. The effect of the previously digested D-SCAKG under in vitro intestinal conditions was compared to the bioactivity of non-digested D-SCAKG. Antiproliferative activity of each individual product from digestion (1-O-octadecyl-2-butyroilglycerol; 1-O-octadecyl glycerol; butyric acid) was also performed. The impact of solubilization of lipid products within micellar structures was also tested. The 1-O-octadecyl glycerol was the most active compound, followed by 1-O-octadecyl-2-butyroilglycerol, D-SCAKG and butyric acid. The 1-O-octadecyl glycerol and butyric acid were the only molecules that showed antiproliferative effect in absence of micelles. Digested D-SCAKG was 4-fold more effective than non-digested D-SCAKG. A synergism between 1-O-octadecyl-2-butyroilglycerol and 1-O-octadecyl glycerol was evidenced. As summary, the synthetic D-SCAKG seems to be an interesting antitumoral lipid against colonocytes, especially after previous intestinal digestion, and mainly due to the synergism of the major products, namely 1-O-octadecyl-2-butyroilglycerol and 1-O-octadecyl glycerol. At the same time, 1-O-octadecyl-2-butyroilglycerol would constitute a stable esterified form of butyric acid for its vehiculization.