Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susana T. L. Chung is active.

Publication


Featured researches published by Susana T. L. Chung.


Vision Research | 2001

Psychophysics of reading. XX. Linking letter recognition to reading speed in central and peripheral vision.

Gordon E. Legge; J. Stephen Mansfield; Susana T. L. Chung

Our goal is to link spatial and temporal properties of letter recognition to reading speed for text viewed centrally or in peripheral vision. We propose that the size of the visual span - the number of letters recognizable in a glance - imposes a fundamental limit on reading speed, and that shrinkage of the visual span in peripheral vision accounts for slower peripheral reading. In Experiment 1, we estimated the size of the visual span in the lower visual field by measuring RSVP (rapid serial visual presentation) reading times as a function of word length. The size of the visual span decreased from at least 10 letters in central vision to 1.7 letters at 15 degrees eccentricity, in good agreement with the corresponding reduction of reading speed measured by Chung and coworkers (Chung, S. T. L., Mansfield, J. S., & Legge, G. E. (1998). Psychophysics of reading. XVIII. The effect of print size on reading speed in normal peripheral vision. Vision Research, 38, 2949-2962). In Exp. 2, we measured letter recognition for trigrams (random strings of three letters) as a function of their position on horizontal lines passing through fixation (central vision) or displaced downward into the lower visual field (5, 10 and 20 degrees ). We also varied trigram presentation time. We used these data to construct visual-span profiles of letter accuracy versus letter position. These profiles were used as input to a parameter-free model whose output was RSVP reading speed. A version of this model containing a simple lexical-matching rule accounted for RSVP reading speed in central vision. Failure of this version of the model in peripheral vision indicated that people rely more on lexical inference to support peripheral reading. We conclude that spatiotemporal characteristics of the visual span limit RSVP reading speed in central vision, and that shrinkage of the visual span results in slower reading in peripheral vision.


Vision Research | 2001

Spatial-frequency and contrast properties of crowding

Susana T. L. Chung; Dennis M. Levi; Gordon E. Legge

Crowding, the difficulty in recognizing a letter flanked by other letters, has been explained as a lateral masking effect. The purpose of this study was to examine the spatial-frequency and contrast dependencies of crowding, and to compare them with the properties of pattern masking. In experiment 1, we measured contrast thresholds for identifying the middle letters in strings of three randomly chosen lower-case letters (trigrams), for a range of letter spacings. Letters were digitally filtered using a set of bandpass filters, with peak object spatial frequencies ranging from 0.63 to 10 c/letter. Bandwidth of the filters was 1 octave. Frequencies of the target and flanking letters were the same, or differed by up to 2 octaves. Contrast of the flanking letters was fixed at the maximum value. Testing was conducted at the fovea and 5 degrees eccentricity. We found that crowding exhibits spatial-tuning functions like masking, but with generally broader bandwidths than those for masking. The spatial extent of crowding was found to be about 0.5 deg at the fovea and 2 deg at 5 degrees eccentricity, independent of target letter frequency. In experiment 2, we measured the contrast thresholds for identifying the middle target letters in trigrams for a range of flanking letter contrasts at 5 degrees eccentricity. At low flanker contrast, crowding does not show a facilitatory region, unlike pattern masking. At high flanker contrast, threshold rises with contrast with an exponent of 0.13-0.3, lower than corresponding exponents for pattern masking. In experiment 3, we varied the contrast ratio between the flanking letters and the target letters, and found that the magnitude of crowding increases monotonically with contrast ratio. This finding contradicts a prediction based on a grouping explanation for crowding. Our results are consistent with the postulation that crowding and masking may share the same first stage linear filtering process, and perhaps a similar second-stage process, with the additional property that the second-stage process in crowding pools information over a spatial extent that varies with eccentricity.


Vision Research | 1998

PSYCHOPHYSICS OF READING: XVIII. THE EFFECT OF PRINT SIZE ON READING SPEED IN NORMAL PERIPHERAL VISION

Susana T. L. Chung; J. Stephen Mansfield; Gordon E. Legge

Reading in peripheral vision is slow and requires large print, posing substantial difficulty for patients with central scotomata. The purpose of this study was to evaluate the effect of print size on reading speed at different eccentricities in normal peripheral vision. We hypothesized that reading speeds should remain invariant with eccentricity, as long as the print is appropriately scaled in size--the scaling hypothesis. The scaling hypothesis predicts that log-log plots of reading speed versus print size exhibit the same shape at all eccentricities, but shift along the print-size axis. Six normal observers read aloud single sentences (approximately 11 words in length) presented on a computer monitor, one word at a time, using rapid serial visual presentation (RSVP). We measured reading speeds (based on RSVP exposure durations yielding 80% correct) for eight print sizes at each of six retinal eccentricities, from 0 (foveal) to 20 deg in the inferior visual field. Consistent with the scaling hypothesis, plots of reading speed versus print size had the same shape at different eccentricities: reading speed increased with print size, up to a critical print size and was then constant at a maximum reading speed for larger print sizes. Also consistent with the scaling hypothesis, the plots shifted horizontally such that average values of the critical print size increased from 0.16 deg (fovea) to 2.22 deg (20 deg peripheral). Inconsistent with the scaling hypothesis, the plots also exhibited vertical shifts so that average values of the maximum reading speed decreased from 807 w.p.m. (fovea) to 135 w.p.m. (20 deg peripheral). Because the maximum reading speed is not invariant with eccentricity even when the print size was scaled, we reject the scaling hypothesis and conclude that print size is not the only factor limiting maximum reading speed in normal peripheral vision.


Vision Research | 2002

Spatial-frequency characteristics of letter identification in central and peripheral vision

Susana T. L. Chung; Gordon E. Legge; Bosco S. Tjan

Spatial-frequency characteristics of letter identification are much better understood in the fovea than in the periphery. The purpose of this study was to compare the spatial-frequency characteristics of letter identification in central and peripheral vision. We measured contrast thresholds for identifying single, Times-Roman lower-case letters that were spatially band-pass filtered. Each of the 26 letters was digitally filtered with a set of nine cosine log filters, with peak object spatial frequencies ranging from 0.63 to 10 c/letter, in half-octave steps. Bandwidth of the filters was 1 octave. Three observers with normal vision were each tested monocularly at the fovea, and at 5 degrees and 10 degrees in the inferior visual field. Letter sizes were 0.2, 0.4 and 0.6 log units larger than high contrast, unfiltered acuity letters. Plots of contrast sensitivity for letter identification vs. frequency of the band-pass filters exhibit spatial tuning. In general, the spatial-frequency characteristics of letter identification are fundamentally identical between central and peripheral vision. These characteristics include the scaling of the peak frequency of the spatial-tuning functions with letter size and the bandwidth of the tuning functions. The only difference between the fovea and the periphery is that for the same physical letter size, peak sensitivity of the spatial-tuning functions occurs at a higher retinal frequency at the fovea than in the periphery. To test whether or not the contrast sensitivity function (CSF) can account for the differences in the spatial-frequency characteristics of letter identification between central and peripheral vision, we incorporated a human CSF into an ideal-observer model, and tested the performance of this ideal-observer on the same letter identification task used with the human observers. Data from this CSF-ideal-observer resemble closely those of human observers, suggesting that the spatial-frequency characteristics of human letter identification can be accounted for by the CSF and the letter-identity information, without invoking selection among narrow-band spatial-frequency channels.


Journal of Vision | 2007

Effect of letter spacing on visual span and reading speed.

Deyue Yu; Sing-Hang Cheung; Gordon E. Legge; Susana T. L. Chung

S. T. L. Chung (2002) has shown that rapid serial visual presentation (RSVP) reading speed varies with letter spacing, peaking near the standard letter spacing for text and decreasing for both smaller and larger spacings. In this study, we tested the hypothesis that the dependence of reading speed on letter spacing is mediated by the size of the visual span-the number of letters recognized with high accuracy without moving the eyes. If so, the size of the visual span and reading speed should show a similar dependence on letter spacing. We tested this prediction for RSVP reading and asked whether it generalizes to the reading of blocks of text requiring eye movements. We measured visual-span profiles and reading speeds as a function of letter spacing. Visual-span profiles, measured with trigrams (strings of three random letters), are plots of letter-recognition accuracy as a function of letter position left or right of fixation. Size of the visual span was quantified by a measure of the area under the visual-span profile. Reading performance was measured using two presentation methods: RSVP and flashcard (a short block of text on four lines). We found that the size of the visual span and the reading speeds measured by the two presentation methods showed a qualitatively similar dependence on letter spacing and that they were highly correlated. These results are consistent with the view that the size of the visual span is a primary visual factor that limits reading speed.


Vision Research | 2007

Learning to identify crowded letters: Does it improve reading speed?

Susana T. L. Chung

Crowding, the difficulty in identifying a letter embedded in other letters, has been suggested as an explanation for slow reading in peripheral vision. In this study, we asked whether crowding in peripheral vision can be reduced through training on identifying crowded letters, and if so, whether these changes will lead to improved peripheral reading speed. We measured the spatial extent of crowding, and reading speeds for a range of print sizes at 10 degrees inferior visual field before and after training. Following training, averaged letter identification performance improved by 88% at the trained (the closest) letter separation. The improvement transferred to other untrained separations such that the spatial extent of crowding decreased by 38%. However, averaged maximum reading speed improved by a mere 7.2%. These findings demonstrated that crowding in peripheral vision could be reduced through training. Unfortunately, the reduction in the crowding effect did not lead to improved peripheral reading speed.


Investigative Ophthalmology & Visual Science | 2011

Improving Reading Speed for People with Central Vision Loss through Perceptual Learning

Susana T. L. Chung

PURPOSE Perceptual learning has been shown to be effective in improving visual functions in the normal adult visual system, as well as in adults with amblyopia. In this study, the feasibility of applying perceptual learning to enhance reading speed in people with long-standing central vision loss was evaluated. METHODS Six observers (mean age, 73.8) with long-standing central vision loss practiced an oral sentence-reading task, with words presented sequentially using rapid serial visual presentation (RSVP). A pre-test consisted of measurements of visual acuities, RSVP reading speeds for six print sizes, the location of the preferred retinal locus for fixation (fPRL), and fixation stability. Training consisted of six weekly sessions of RSVP reading, with 300 sentences presented per session. A post-test, identical with the pre-test, followed the training. RESULTS All observers showed improved RSVP reading speed after training. The improvement averaged 53% (range, 34-70%). Comparisons of pre- and post-test measurements revealed little changes in visual acuity, critical print size, location of the fPRL, and fixation stability. CONCLUSIONS The specificity of the learning effect, and the lack of changes to the fPRL location and fixation stability suggest that the improvements are not due to observers adopting a retinal location with better visual capability, or an improvement in fixation. Rather, the improvements are likely to represent genuine plasticity of the visual system despite the older ages of the observers, coupled with long-standing sensory deficits. Perceptual learning might be an effective way of enhancing visual performance for people with central vision loss.


Optometry and Vision Science | 2004

Reading Speed Benefits from Increased Vertical Word Spacing in Normal Peripheral Vision

Susana T. L. Chung

Purpose. Crowding, the adverse spatial interaction due to proximity of adjacent targets, has been suggested as an explanation for slow reading in peripheral vision. The purposes of this study were to (1) demonstrate that crowding exists at the word level and (2) examine whether or not reading speed in central and peripheral vision can be enhanced with increased vertical word spacing. Methods. Five normal observers read aloud sequences of six unrelated four-letter words presented on a computer monitor, one word at a time, using rapid serial visual presentation (RSVP). Reading speeds were calculated based on the RSVP exposure durations yielding 80% correct. Testing was conducted at the fovea and at 5° and 10° in the inferior visual field. Critical print size (CPS) for each observer and at each eccentricity was first determined by measuring reading speeds for four print sizes using unflanked words. We then presented words at 0.8× or 1.4× CPS, with each target word flanked by two other words, one above and one below the target word. Reading speeds were determined for vertical word spacings (baseline-to-baseline separation between two vertically separated words) ranging from 0.8× to 2× the standard single-spacing, as well as the unflanked condition. Results. At the fovea, reading speed increased with vertical word spacing up to about 1.2× to 1.5× the standard spacing and remained constant and similar to the unflanked reading speed at larger vertical word spacings. In the periphery, reading speed also increased with vertical word spacing, but it remained below the unflanked reading speed for all spacings tested. At 2× the standard spacing, peripheral reading speed was still about 25% lower than the unflanked reading speed for both eccentricities and print sizes. Results from a control experiment showed that the greater reliance of peripheral reading speed on vertical word spacing was also found in the right visual field. Conclusions. Increased vertical word spacing, which presumably decreases the adverse effect of crowding between adjacent lines of text, benefits reading speed. This benefit is greater in peripheral than central vision.


Journal of Vision | 2007

Crowding between first- and second-order letter stimuli in normal foveal and peripheral vision.

Susana T. L. Chung; Roger W. Li; Dennis M. Levi

Evidence that the detection of first- and second-order visual stimuli is processed by separate pathways abounds. This study asked whether first- and second-order stimuli remain independent at the stage of processing where crowding occurs. We measured thresholds for identifying a first-order (luminance defined) or second-order (contrast defined) target letter in the presence of two second- or first-order flanking letters. For comparison, we also measured thresholds when the target and flanking letters were all first or second order. Contrast of the flankers was 1.6 times their respective contrast thresholds. Measurements were obtained at the fovea and 10 degrees in the lower visual field of four normally sighted observers. Two observers were also tested at 10 degrees nasal visual field. As expected, in both the fovea and periphery, the magnitude of crowding (threshold elevation) was maximal at the closest letter separation and decreased as letter separation increased. The magnitude of crowding was greater for second- than for first-order target letters, independent of the order type of flankers; however, the critical distance for crowding was similar for first- and second-order letters. Substantial crossover crowding occurred when the target and flanking letters were of different order type. Our finding of substantial interaction between first- and second-order stimuli suggests that the processing of these stimuli is not independent at the stage of processing at which crowding occurs.


Vision Research | 2007

Spatial and Temporal Properties of the Illusory Motion-Induced Position Shift for Drifting Stimuli

Susana T. L. Chung; Saumil S. Patel; Harold E. Bedell; Ozgur Yilmaz

The perceived position of a stationary Gaussian window of a Gabor target shifts in the direction of motion of the Gabors carrier stimulus, implying the presence of interactions between the specialized visual areas that encode form, position, and motion. The purpose of this study was to examine the temporal and spatial properties of this illusory motion-induced position shift (MIPS). We measured the magnitude of the MIPS for a pair of horizontally separated (2 or 8deg) truncated-Gabor stimuli (carrier=1 or 4cpd sinusoidal grating, Gaussian envelope SD=18arc min, 50% contrast) or a pair of Gaussian-windowed random-texture patterns that drifted vertically in opposite directions. The magnitude of the MIPS was measured for drift speeds up to 16deg/s and for stimulus durations up to 453ms. The temporal properties of the MIPS depended on the drift speed. At low velocities, the magnitude of the MIPS increased monotonically with the stimulus duration. At higher velocities, the magnitude of the MIPS increased with duration initially, then decreased between approximately 45 and 75ms before rising to reach a steady-state value at longer durations. In general, the magnitude of the MIPS was larger when the truncated-Gabor or random-texture stimuli were more spatially separated, but was similar for the different types of carrier stimuli. Our results are consistent with a framework that suggests that perceived form is modulated dynamically during stimulus motion.

Collaboration


Dive into the Susana T. L. Chung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bosco S. Tjan

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deyue Yu

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Roger W. Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Girish Kumar

University of California

View shared research outputs
Top Co-Authors

Avatar

Saumil S. Patel

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge