Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susann Deike is active.

Publication


Featured researches published by Susann Deike.


Frontiers in Psychology | 2012

The Build-up of Auditory Stream Segregation: A Different Perspective.

Susann Deike; Peter Heil; Martin Böckmann-Barthel; André Brechmann

The build-up of auditory stream segregation refers to the notion that sequences of alternating A and B sounds initially tend to be heard as a single stream, but with time appear to split into separate streams. The central assumption in the analysis of this phenomenon is that streaming sequences are perceived as one stream at the beginning by default. In the present study, we test the validity of this assumption and document its impact on the apparent build-up phenomenon. Human listeners were presented with ABAB sequences, where A and B were harmonic tone complexes of seven different fundamental frequency separations (Δf) ranging from 2 to 14 semitones. Subjects had to indicate, as promptly as possible, their initial percept of the sequences, as either “one stream” or “two streams,” and any changes thereof during the sequences. We found that subjects did not generally indicate a one-stream percept at the beginning of streaming sequences. Instead, the first perceptual decision depended on Δf, with the probability of a one-stream percept decreasing, and that of a two-stream percept increasing, with increasing Δf. Furthermore, subjects required some time to make and report a decision on their perceptual organization. Taking this time into account, the resulting time courses of two-stream probabilities differ markedly from those suggested by the conventional analysis. A build-up-like increase in two-stream probability was found only for the Δf of six semitones. At the other Δf conditions no or only minor increases in two-stream probability occurred. These results shed new light on the build-up of stream segregation and its possible neural correlates.


Brain Research | 2008

A multilevel and cross-modal approach towards neuronal mechanisms of auditory streaming.

Torsten Rahne; Susann Deike; Elena Selezneva; Michael Brosch; Reinhard König; Henning Scheich; Martin Böckmann; André Brechmann

We report first results of a multilevel, cross-modal study on the neuronal mechanisms underlying auditory sequential streaming, with the focus on the impact of visual sequences on perceptually ambiguous tone sequences which can either be perceived as two separate streams or one alternating stream. We combined two psychophysical experiments performed on humans and monkeys with two human brain imaging experiments which allow to obtain complementary information on brain activation with high spatial (fMRI) and high temporal (MEG) resolution. The same acoustic paradigm based on the pairing of tone sequences with visual stimuli was used in all human studies and, in an adapted version, in the psychophysical study on monkeys. Our multilevel approach provides experimental evidence that the pairing of auditory and visual stimuli can reliably introduce a bias towards either an integrated or a segregated perception of ambiguous sequences. Thus, comparable to an explicit instruction, this approach can be used to control the subjects perceptual organization of an ambiguous sound sequence without the need for the subject to directly report it. This finding is of particular importance for animal studies because it allows to compare electrophysiological responses of auditory cortex neurons to the same acoustic stimulus sequence eliciting either a segregated or integrated percept.


Frontiers in Systems Neuroscience | 2013

Rhythm sensitivity in macaque monkeys

Elena Selezneva; Susann Deike; Stanislava Knyazeva; Henning Scheich; André Brechmann; Michael Brosch

This study provides evidence that monkeys are rhythm sensitive. We composed isochronous tone sequences consisting of repeating triplets of two short tones and one long tone which humans perceive as repeating triplets of two weak and one strong beat. This regular sequence was compared to an irregular sequence with the same number of randomly arranged short and long tones with no such beat structure. To search for indication of rhythm sensitivity we employed an oddball paradigm in which occasional duration deviants were introduced in the sequences. In a pilot study on humans we showed that subjects more easily detected these deviants when they occurred in a regular sequence. In the monkeys we searched for spontaneous behaviors the animals executed concomitant with the deviants. We found that monkeys more frequently exhibited changes of gaze and facial expressions to the deviants when they occurred in the regular sequence compared to the irregular sequence. In addition we recorded neuronal firing and local field potentials from 175 sites of the primary auditory cortex during sequence presentation. We found that both types of neuronal signals differentiated regular from irregular sequences. Both signals were stronger in regular sequences and occurred after the onset of the long tones, i.e., at the position of the strong beat. Local field potential responses were also significantly larger for the durational deviants in regular sequences, yet in a later time window. We speculate that these temporal pattern-selective mechanisms with a focus on strong beats and their deviants underlie the perception of rhythm in the chosen sequences.


Frontiers in Psychology | 2014

Time course of auditory streaming: do CI users differ from normal-hearing listeners?

Martin Böckmann-Barthel; Susann Deike; André Brechmann; Michael Ziese; Jesko L. Verhey

In a complex acoustical environment, the auditory system decides which stimulus components originate from the same source by forming auditory streams, where temporally non-overlapping stimulus portions are considered to originate from one source if their stimulus characteristics are similar. The mechanisms underlying streaming are commonly studied by alternating sequences of A and B signals which are often tones with different frequencies. For similar frequencies, they are grouped into one stream. Otherwise, they are considered to belong to different streams. The present study investigates streaming in cochlear implant (CI) users, where hearing is restored by electrical stimulation of the auditory nerve. CI users listened to 30-s long sequences of alternating A and B harmonic complexes at four different fundamental frequency separations, ranging from 2 to 14 semitones. They had to indicate as promptly as possible after sequence onset, if they perceived one stream or two streams and, in addition, any changes of the percept throughout the rest of the sequence. The conventional view is that the initial percept is always that of a single stream which may after some time change to a percept of two streams. This general build-up hypothesis has recently been challenged on the basis of a new analysis of data of normal-hearing listeners. Using the same experimental paradigm and analysis, the present study found that the results of CI users agree with those of the normal-hearing listeners: (i) the probability of the first decision to be a one-stream percept decreased and that of a two-stream percept increased as Δf increased, and (ii) a build-up was only found for 6 semitones. Only the time elapsed before the listeners made their first decision of the percept was prolonged as compared to normal-hearing listeners. The similarity in the data of the CI user and the normal-hearing listeners indicates that the quality of stream formation is similar in these groups of listeners.


Frontiers in Neuroscience | 2014

Evaluating auditory stream segregation of SAM tone sequences by subjective and objective psychoacoustical tasks, and brain activity

Lena-Vanessa Dolležal; André Brechmann; Georg M. Klump; Susann Deike

Auditory stream segregation refers to a segregated percept of signal streams with different acoustic features. Different approaches have been pursued in studies of stream segregation. In psychoacoustics, stream segregation has mostly been investigated with a subjective task asking the subjects to report their percept. Few studies have applied an objective task in which stream segregation is evaluated indirectly by determining thresholds for a percept that depends on whether auditory streams are segregated or not. Furthermore, both perceptual measures and physiological measures of brain activity have been employed but only little is known about their relation. How the results from different tasks and measures are related is evaluated in the present study using examples relying on the ABA- stimulation paradigm that apply the same stimuli. We presented A and B signals that were sinusoidally amplitude modulated (SAM) tones providing purely temporal, spectral or both types of cues to evaluate perceptual stream segregation and its physiological correlate. Which types of cues are most prominent was determined by the choice of carrier and modulation frequencies (fmod) of the signals. In the subjective task subjects reported their percept and in the objective task we measured their sensitivity for detecting time-shifts of B signals in an ABA- sequence. As a further measure of processes underlying stream segregation we employed functional magnetic resonance imaging (fMRI). SAM tone parameters were chosen to evoke an integrated (1-stream), a segregated (2-stream), or an ambiguous percept by adjusting the fmod difference between A and B tones (Δfmod). The results of both psychoacoustical tasks are significantly correlated. BOLD responses in fMRI depend on Δfmod between A and B SAM tones. The effect of Δfmod, however, differs between auditory cortex and frontal regions suggesting differences in representation related to the degree of perceptual ambiguity of the sequences.


Frontiers in Neuroscience | 2015

Decision making and ambiguity in auditory stream segregation.

Susann Deike; Peter Heil; Martin Böckmann-Barthel; André Brechmann

Researchers of auditory stream segregation have largely taken a bottom-up view on the link between physical stimulus parameters and the perceptual organization of sequences of ABAB sounds. However, in the majority of studies, researchers have relied on the reported decisions of the subjects regarding which of the predefined percepts (e.g., one stream or two streams) predominated when subjects listened to more or less ambiguous streaming sequences. When searching for neural mechanisms of stream segregation, it should be kept in mind that such decision processes may contribute to brain activation, as also suggested by recent human imaging data. The present study proposes that the uncertainty of a subject in making a decision about the perceptual organization of ambiguous streaming sequences may be reflected in the time required to make an initial decision. To this end, subjects had to decide on their current percept while listening to ABAB auditory streaming sequences. Each sequence had a duration of 30 s and was composed of A and B harmonic tone complexes differing in fundamental frequency (ΔF). Sequences with seven different ΔF were tested. We found that the initial decision time varied non-monotonically with ΔF and that it was significantly correlated with the degree of perceptual ambiguity defined from the proportions of time the subjects reported a one-stream or a two-stream percept subsequent to the first decision. This strong relation of the proposed measures of decision uncertainty and perceptual ambiguity should be taken into account when searching for neural correlates of auditory stream segregation.


Frontiers in Neuroscience | 2014

Probing auditory scene analysis.

Susann Deike; Susan L. Denham; Elyse Sussman

In natural environments, the auditory system is typically confronted with a mixture of sounds originating from different sound sources. The sounds emanating from different sources can overlap each other in time and feature space. Thus, the auditory system has to continuously decompose competing sounds into distinct meaningful auditory objects or “auditory streams” associated with the possible sound sources. This decomposition of the sounds, termed “Auditory scene analysis” (ASA) by Bregman (1990), involves two kinds of grouping. Grouping based on simultaneous cues (e.g., harmonicity) and on sequential cues (e.g., similarity of acoustic features over time). Understanding how the brain solves these tasks is a fundamental challenge facing auditory scientists. In recent years, the topic of ASA was broadly investigated in different fields of auditory research using a wide range of methods, including studies in different species (Hulse et al., 1997; Fay, 2000; Fishman et al., 2001; Moss and Surlykke, 2001), and computer modeling of ASA (for recent reviews see, Winkler et al., 2012; Gutschalk and Dykstra, 2014). Despite advances in understanding ASA, it still proves to be a major challenge for auditory research, especially in verifying whether experimental findings are transferable to more realistic auditory scenes. This special issue is a collection of 10 research papers and one review paper providing a snapshot of current ASA research. The research paper on visual perception provides a comparative view of modality specific as well as general characteristics of perception. One approach for understanding ASA in real auditory scenes is the use of stimulus parameters that produce an ambiguous percept (cf. Pressnitzer et al., 2011). The advantage of such an approach is that different perceptual organizations can be studied without varying physical stimulus parameters. Using a visual ambiguous stimulus and combining real-time functional magnetic resonance imaging and machine learning techniques, Reichert et al. (2014) showed that it is possible to determine the momentary state of a subjects conscious percept from time resolved BOLD-activity. The high classification accuracy of this data-driven classification approach may be particularly useful for auditory research investigating perception in continuous, ecologically-relevant sound scenes. A second advantage in using ambiguous stimuli in experiments on ASA is that perception of them can be influenced by intention or task (Moore and Gockel, 2002). By manipulating task requirements one can mirror real hearing situations where listeners often need to identify and localize sound sources. The studies by Shestopalova et al. (2014) and Kondo et al. (2014) examined the influence of motion on stream segregation. In general, and corresponding to earlier findings, both of these studies found that sound source separation in space promoted segregation. Surprisingly, however, the effect of spatial separation on stream segregation was found to be temporally limited and affected by volitional head motion (Kondo et al., 2014), but unaffected by movement of sound sources or by the presentation of movement-congruent visual cues (Shestopalova et al., 2014). Another study, by Sussman-Fort and Sussman (2014), investigated the influence of stimulus context on the buildup of stream segregation. They found that the build-up of stream segregation was context-dependent, occurring faster under constant than varying stimulus conditions. Based on these findings the authors suggested that the auditory system maintains a representation of the environment that is only updated when new information indicates that reanalyzing the scene is necessary. Two further studies examined the influence of attention on stream segregation. Nie et al. (2014) found that in conditions of weak spectral contrast, attention facilitated stream segregation. Shuai and Elhilali (2014) found that different forms of attention, both stimulus-driven and top-down attentional processes, modulated the response to a salient event detected within a sound stream. The special issue also includes two research papers that extend current views on multistability and perceptual ambiguity. The psychophysical study by Denham et al. (2014) showed that streaming sequences could be perceived in many more ways than in the traditionally assumed (Integrated vs. Segregated organizations) and that the different interpretations continuously compete for dominance. Moreover, despite being highly stochastic, the switching patterns of individual participants could be distinguished from those of others. Hence, perceptual multistability can be used to characterize both general mechanisms and individual differences in human perception. By comparing stimulus conditions that promote one perceptual organization with those causing an ambiguous percept Dollezal et al. (2014) found specific BOLD responses for the ambiguous condition in higher cognitive areas (i.e., posterior medial prefrontal cortex and posterior cingulate cortex). Both of these regions were associated with cognitive functions, monitoring decision uncertainty (Ridderinkhof et al., 2004) and being involved when higher task demands were imposed (Raichle et al., 2001; Dosenbach et al., 2007), respectively. This suggests that perceptual ambiguity may be characterized by uncertainty regarding the appropriate perceptual organization, and by higher cognitive load due to this uncertainty. A second group of research papers within this special issue focused on understanding hearing deficits in older listeners and cochlear implant (CI) users. Gallun et al. (2013) demonstrated that listeners could be categorized in terms of their ability to use spatial and spectrotemporal cues to separate competing speech streams. They showed that the factor of age substantially reduced spatial release from masking, supporting the hypothesis that aging, independent of an individuals hearing threshold, can result in changes in the cortical and/or subcortical structures essential for spatial hearing. Divenyi (2014) compared the signal to noise (S/N) ratio at which normal hearing young and elderly listeners were able to discriminate single formant dynamics in vowel-analog streams and found that elderly listeners required a 15 and 20 dB larger S/N ratio than younger listeners. Since formant transitions represent potent cues for speech intelligibility, this result may at least partially explain the well-documented intelligibility loss of speech in babble noise by the elderly. Bockmann-Barthel et al. (2014) pursued the question whether the time course of auditory streaming differs between normal-hearing listeners and CI users and found that the perception of streaming sequences was similar in quality between both groups. This similarity may suggest that stream segregation is not solely determined by frequency discrimination, and that CI users do not simply respond to differences between A and B sounds but actually experience the phenomenon of stream segregation. The review by Bendixen (2014) suggests predictability as a cue for sound source decomposition. Bendixen collected empirical evidence spanning issues of predictive auditory processing, predictive processing in ASA, and methodological aspects of measuring ASA. As a result, and as a theoretical framework, an analogy with the old-plus-new heuristic for grouping simultaneous acoustic signals was proposed. Taken together, this special issue provides a comprehensive summary of current research in ASA, relating the approaches and experimental findings to natural listening conditions. It would be highly desirable in future research on ASA to use more natural stimuli and to test the ecological validity of these findings. With this special issue we hope to raise awareness of this issue.


European Journal of Neuroscience | 2018

Predictive cues for auditory stream formation in humans and monkeys

Nikolaos C. Aggelopoulos; Susann Deike; Elena Selezneva; Henning Scheich; André Brechmann; Michael Brosch

Auditory perception is improved when stimuli are predictable, and this effect is evident in a modulation of the activity of neurons in the auditory cortex as shown previously. Human listeners can better predict the presence of duration deviants embedded in stimulus streams with fixed interonset interval (isochrony) and repeated duration pattern (regularity), and neurons in the auditory cortex of macaque monkeys have stronger sustained responses in the 60–140 ms post‐stimulus time window under these conditions. Subsequently, the question has arisen whether isochrony or regularity in the sensory input contributed to the enhancement of the neuronal and behavioural responses. Therefore, we varied the two factors isochrony and regularity independently and measured the ability of human subjects to detect deviants embedded in these sequences as well as measuring the responses of neurons the primary auditory cortex of macaque monkeys during presentations of the sequences. The performance of humans in detecting deviants was significantly increased by regularity. Isochrony enhanced detection only in the presence of the regularity cue. In monkeys, regularity increased the sustained component of neuronal tone responses in auditory cortex while isochrony had no consistent effect. Although both regularity and isochrony can be considered as parameters that would make a sequence of sounds more predictable, our results from the human and monkey experiments converge in that regularity has a greater influence on behavioural performance and neuronal responses.


Neuropsychologia | 2016

Probing neural mechanisms underlying auditory stream segregation in humans by transcranial direct current stimulation (tDCS).

Susann Deike; Matthias Deliano; André Brechmann

One hypothesis concerning the neural underpinnings of auditory streaming states that frequency tuning of tonotopically organized neurons in primary auditory fields in combination with physiological forward suppression is necessary for the separation of representations of high-frequency A and low-frequency B tones. The extent of spatial overlap between the tonotopic activations of A and B tones is thought to underlie the perceptual organization of streaming sequences into one coherent or two separate streams. The present study attempts to interfere with these mechanisms by transcranial direct current stimulation (tDCS) and to probe behavioral outcomes reflecting the perception of ABAB streaming sequences. We hypothesized that tDCS by modulating cortical excitability causes a change in the separateness of the representations of A and B tones, which leads to a change in the proportions of one-stream and two-stream percepts. To test this, 22 subjects were presented with ambiguous ABAB sequences of three different frequency separations (∆F) and had to decide on their current percept after receiving sham, anodal, or cathodal tDCS over the left auditory cortex. We could confirm our hypothesis at the most ambiguous ∆F condition of 6 semitones. For anodal compared with sham and cathodal stimulation, we found a significant decrease in the proportion of two-stream perception and an increase in the proportion of one-stream perception. The results demonstrate the feasibility of using tDCS to probe mechanisms underlying auditory streaming through the use of various behavioral measures. Moreover, this approach allows one to probe the functions of auditory regions and their interactions with other processing stages.


Frontiers in Neuroscience | 2014

Corrigendum: Probing auditory scene analysis.

Susann Deike; Susan L. Denham; Elyse Sussman

[This corrects the article on p. 293 in vol. 8, PMID: 25309314.].

Collaboration


Dive into the Susann Deike's collaboration.

Top Co-Authors

Avatar

André Brechmann

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar

Henning Scheich

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar

Elena Selezneva

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar

Martin Böckmann-Barthel

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Michael Brosch

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar

Matthias Deliano

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar

Peter Heil

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elyse Sussman

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Birgit Gaschler-Markefski

Otto-von-Guericke University Magdeburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge