Susanna Corti
European Centre for Medium-Range Weather Forecasts
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susanna Corti.
Nature | 1999
Susanna Corti; Franco Molteni; T. N. Palmer
A crucial question in the global-warming debate concerns the extent to which recent climate change is caused by anthropogenic forcing or is a manifestation of natural climate variability. It is commonly thought that the climate response to anthropogenic forcing should be distinct from the patterns of natural climate variability. But, on the basis of studies of nonlinear chaotic models with preferred states or ‘regimes’, it has been argued, that the spatial patterns of the response to anthropogenic forcing may in fact project principally onto modes of natural climate variability. Here we use atmospheric circulation data from the Northern Hemisphere to show that recent climate change can be interpreted in terms of changes in the frequency of occurrence of natural atmospheric circulation regimes. We conclude that recent Northern Hemisphere warming may be more directly related to the thermal structure of these circulation regimes than to any anthropogenic forcing pattern itself. Conversely, the fact that observed climate change projects onto natural patterns cannot be used as evidence of no anthropogenic effect on climate. These results may help explain possible differences between trends in surface temperature and satellite-based temperature in the free atmosphere,,.
Bulletin of the American Meteorological Society | 2014
Gerald A. Meehl; Lisa M. Goddard; G. J. Boer; Robert J. Burgman; Grant Branstator; Christophe Cassou; Susanna Corti; Gokhan Danabasoglu; Francisco J. Doblas-Reyes; Ed Hawkins; Alicia Karspeck; Masahide Kimoto; Arun Kumar; Daniela Matei; Juliette Mignot; Rym Msadek; Antonio Navarra; Holger Pohlmann; Michele M. Rienecker; T. Rosati; Edwin K. Schneider; Doug Smith; Rowan Sutton; Haiyan Teng; Geert Jan van Oldenborgh; Gabriel A. Vecchi; Stephen Yeager
This paper provides an update on research in the relatively new and fast-moving field of decadal climate prediction, and addresses the use of decadal climate predictions not only for potential users of such information but also for improving our understanding of processes in the climate system. External forcing influences the predictions throughout, but their contributions to predictive skill become dominant after most of the improved skill from initialization with observations vanishes after about 6–9 years. Recent multimodel results suggest that there is relatively more decadal predictive skill in the North Atlantic, western Pacific, and Indian Oceans than in other regions of the world oceans. Aspects of decadal variability of SSTs, like the mid-1970s shift in the Pacific, the mid-1990s shift in the northern North Atlantic and western Pacific, and the early-2000s hiatus, are better represented in initialized hindcasts compared to uninitialized simulations. There is evidence of higher skill in initialize...
Climate Dynamics | 2013
Linus Magnusson; Magdalena Alonso-Balmaseda; Susanna Corti; Franco Molteni; Tim Stockdale
This study discusses and compares three different strategies used to deal with model error in seasonal and decadal forecasts. The strategies discussed are the so-called full initialisation, anomaly initialisation and flux correction. In the full initialisation the coupled model is initialised to a state close to the real-world attractor and after initialisation the model drifts towards its own attractor, giving rise to model bias. The anomaly initialisation aims to initialise the model close to its own attractor, by initialising only the anomalies. The flux correction strategy aims to keep the model trajectory close to the real-world attractor by adding empirical corrections. These three strategies have been implemented in the ECMWF coupled model, and are evaluated at seasonal and decadal time-scales. The practical implications of the different strategies are also discussed. Results show that full initialisation results in a clear model drift towards a colder climate. The anomaly initialisation is able to reduce the drift, by initialising around the model mean state. However, the erroneous model mean state results in degraded seasonal forecast skill. The best results on the seasonal time-scale are obtained using momentum-flux correction, mainly because it avoids the positive feedback responsible for a strong cold bias in the tropical Pacific. It is likely that these results are model dependent: the coupled model used here shows a strong cold bias in the Central Pacific, resulting from a positive coupled feedback between winds and SST. At decadal time-scales it is difficult to determine whether any of the strategies is superior to the others.
Geophysical Research Letters | 2012
Andrew Dawson; T. N. Palmer; Susanna Corti
It is shown that a global atmospheric model with horizontal resolution typical of that used in operational numerical weather prediction is able to simulate non-gaussian probability distributions associated with the climatology of quasi-persistent Euro-Atlantic weather regimes. The spatial patterns of these simulated regimes are remarkably accurate. By contrast, the same model, integrated at a resolution more typical of current climate models, shows no statistically significant evidence of such non-gaussian regime structures, and the spatial structure of the corresponding clusters are not accurate. Hence, whilst studies typically show incremental improvements in first and second moments of climatological distributions of the large-scale flow with increasing model resolution, here a real step change in the higher-order moments is found. It is argued that these results have profound implications for the ability of high resolution limited-area models, forced by low resolution global models, to simulate reliably, regional climate change signals.
Journal of Climate | 2007
David M. Straus; Susanna Corti; Franco Molteni
Abstract The circulation regimes in the Pacific–North American region are studied using the NCEP–NCAR reanalyses for the 18-winter period (1981/82–1998/99; NCEP18) and for the 54-winter period (1948/49–2001/02; NCEP54). The sampling properties of the regimes are estimated using very large ensembles (of size 55) of winter simulations made for the NCEP18 period with the atmospheric general circulation model of the Center for Ocean–Land–Atmosphere Studies, forced by observed SST and sea ice. The regimes are identified using a modified version of the k-means method. From the NCEP54 dataset a set of four clusters was found [i.e., the Alaskan ridge (AR), Arctic low (AL), Pacific trough (PT), and the Arctic high (AH)], which are significant (vis-a-vis a multinormal background), and more reproducible (within randomly chosen half-length samples) than would be expected from a multinormal process. The frequency of occurrence of the PT (AH) has increased (decreased) significantly during the past two decades. The PT c...
Philosophical Transactions of the Royal Society A | 2014
A. Weisheimer; Susanna Corti; T. N. Palmer; F. Vitart
The finite resolution of general circulation models of the coupled atmosphere–ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere–ocean climate system in operational forecast mode, and the latest seasonal forecasting system—System 4—has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981–2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden–Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid-latitude circulation regimes over the Pacific–North America region.
Journal of Climate | 2013
Virginie Guemas; Susanna Corti; Javier García-Serrano; F. J. Doblas-Reyes; Magdalena A. Balmaseda; Linus Magnusson
AbstractThe Indian Ocean stands out as the region where the state-of-the-art decadal climate predictions of sea surface temperature (SST) perform the best worldwide for forecast times ranging from the second to the ninth year, according to correlation and root-mean-square error (RMSE) scores. This paper investigates the reasons for this high skill by assessing the contributions from the initial conditions, greenhouse gases, solar activity, and volcanic aerosols. The comparison between the SST correlation skill in uninitialized historical simulations and hindcasts initialized from estimates of the observed climate state shows that the high Indian Ocean skill is largely explained by the varying radiative forcings, the latter finding being supported by a set of additional sensitivity experiments. The long-term warming trend is the primary contributor to the high skill, though not the only one. Volcanic aerosols bring additional skill in this region as shown by the comparison between initialized hindcasts tak...
Environmental Research Letters | 2015
Paolo Davini; Jost von Hardenberg; Susanna Corti
Atlantic Multidecadal Variability (AMV) is known for influencing the mid-latitude climate variability, especially over the European region. This letter assesses the impact of the wintertime AMV in a group of 200-year atmospheric-only numerical experiments, in which the atmosphere is forced with positive and negative AMV-like sea surface temperatures (SSTs) and sea ice concentration patterns. Anomalies are applied separately to the whole North Atlantic ocean, to the extratropics (north of 30° N) and to the tropics (between 0° and 30° N). Results show that AMV anomalies considerably affect the North Atlantic Oscillation (NAO), the jet stream variability and the frequency of atmospheric blocking over the Euro-Atlantic sector, resulting in a negative (positive) NAO during positive (negative) AMV. It is found that the bulk of the signal is originated in the tropics and it is associated with a Gill-like response—an anomalous upper tropospheric streamfunction dipole over the tropical Atlantic driven by the SST anomalies—and with the subsequent structural change of the upper-tropospheric jet, which affects the propagation of Rossby waves in the North Atlantic. Conversely, the NAO response is almost negligible when the AMV anomalies are applied only to the extratropics, suggesting that the relevance of SST anomalies along the North Atlantic frontal zone may be overestimated.
Journal of Climate | 2003
Franco Molteni; Susanna Corti; Laura Ferranti; Julia Slingo
The effects of SST anomalies on the interannual and intraseasonal variability of the Asian summer monsoon have been studied by multivariate statistical analyses of 850-hPa wind and rainfall fields simulated in a set of ensemble integrations of the ECMWF atmospheric GCM—Predictability Experiments for the Indian Summer Monsoon (PRISM) experiments. The simulations used observed SSTs (PRISM-O), covering 9 yr, characterized by large variations of the ENSO phenomenon in the 1980s and the early 1990s. A parallel set of simulations was also performed with climatological SSTs (PRISM-C), thus enabling the influence of SST forcing on the modes of interannual and intraseasonal variability to be investigated. As in observations, the model’s interannual variability is dominated by a zonally oriented mode, which describes the north‐south movement of the tropical convergence zone (TCZ). This mode appears to be independent of SST forcing, and its robustness between the PRISM-O and PRISM-C simulations suggests that it is driven by internal atmospheric dynamics. On the other hand, the second mode of variability, which again has a good correspondence with observed patterns, shows a clear relationship with the ENSO cycle. Because the mode related to ENSO accounts for only a small part of the total variance, the notion of a quasi-linear superposition of forced and unforced modes of variability may not provide an appropriate interpretation of monsoon interannual variability. Consequently, the possibility of a nonlinear influence has been investigated by exploring the relationship between interannual and intraseasonal variability. As in other studies, a common mode of interannual and intraseasonal variability has been found, in this case describing the north‐south transition of the TCZ associated with monsoon active/break cycles. Although seasonalmean values of the principal component (PC) time series associated with the leading intraseasonal mode shows no significant correlation with ENSO, the two-dimensional probability distribution of the PC indices of the two leading modes changes from unimodal in the warm phase of ENSO to bimodal in the cold ENSO phase. These changes are suggestive of some sort of bifurcation in the monsoon properties, with multiple-regime behavior being established only when the zonal asymmetries in equatorial Pacific SST exceed a threshold value. Although an observational verification of this hypothesis is still to be achieved, the detection of regimelike behavior in simulations by a complex numerical model gives a stronger support to this dynamical framework than simple qualitative arguments based on the analogy with low-order nonlinear systems.
Archive | 2006
Franco Molteni; Fred Kucharski; Susanna Corti
Atmospheric flow regimes are usually defined as large-scale circulation patterns associated with statistical equilibria in phase space, in which the dynamical tendencies of the large-scale flow are balanced by tendencies due to non-linear interactions of high-frequency transients. The existence of states with such properties can be verified in a rigorous way in numerical simulations with simplified numerical models (as in the pioneering study of Reinhold and Pierrehumbert (1982), or in the experiments by Vautard and Legras (1988)). On the other hand, the existence of flow regimes in the real atmosphere has been strongly debated. The detection of regimes in the observational record of upper-air field is indeed a complex task, which has been approached by a number of research groups with a variety of sophisticated statistical methods (see Section 3).