Susanna Hajdu
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susanna Hajdu.
Marine Biology | 1996
Agneta Andersson; Susanna Hajdu; Pia Haecky; Jorma Kuparinen; Johan Wikner
A one year field study of four stations in the Gulf of Bothnia during 1991 showed that the biomass was ca. two times, and primary productivity ca. four times, lower in the north (Bothnian Bay) than in the south (Bothnian Sea) during the summer. Nutrient addition experiments indicated phosphorus limitation of phytoplankton in the Bothanian Bay and the coastal areas in the northern Bothnian Sea, but nitrogen limitation in the open Bothanian Sea. A positive correlation between the phosphate concentration and the production/biomass ratio of phytoplankton was demonstrated, which partly explained the differences in the specific growth rate of the phytoplankton during the summer. Differences in photosynthetic active radiation between the stations also showed a covariation with the primary productivity. The relative importance of nutrient or light limitation for photosynthetic carbon fixation could not, however, the conclusively determined from this study. Marked differences in phytoplankton species composition from north to south were also observed. The number of dominating species was higher in the Bothnian Sea than in the Bothnian Bay. The distribution of some species could be explained as due to nutrient availability (e.g. Nodularia spumigena, Aphanizomenon sp.), while salinity probably limits the distribution of some limnic as well as marine species. The potentially toxic phytoplankton N. spumigena, Dinophysis acuminata and Chrysochromulina spp. were common in the Bothnian Sea but not in the Bothnian Bay. The pico- and nanoplankton biomass during late summer was higher than previously reported due to a revised carbon/volume ratio.
Marine Pollution Bulletin | 2010
Irina Olenina; Norbert Wasmund; Susanna Hajdu; Iveta Jurgensone; Sławomira Gromisz; Janina Kownacka; Kaire Toming; Diana Vaiciute; Sergej Olenin
There is an increasing understanding and requirement to take into account the effects of invasive alien species (IAS) in environmental quality assessments. While IAS are listed amongst the most important factors threatening marine biodiversity, information on their impacts remains unquantified, especially for phytoplankton species. This study attempts to assess the impacts of invasive alien phytoplankton in the Baltic Sea during 1980-2008. A bioinvasion impact assessment method (BPL - biopollution level index) was applied to phytoplankton monitoring data collected from eleven sub-regions of the Baltic Sea. BPL takes into account abundance and distribution range of an alien species and the magnitude of the impact on native communities, habitats and ecosystem functioning. Of the 12 alien/cryptogenic phytoplankton species recorded in the Baltic Sea only one (the dinoflagellate Prorocentrum minimum) was categorized as an IAS, causing a recognizable environmental effect.
International Review of Hydrobiology | 2000
Susanna Hajdu; Lars Edler; Irina Olenina; Barbara Witek
During the last two decades the potentially toxic dinoflagellate Prorocentrum minimum (PAVILLARD) SCHILLER has successfully established itself in the Baltic Sea. It is now a dominant summer species in the southern Baltic proper, and reaches as far into the low salinity of the northern Baltic as the central Gulf of Finland. In the 1990s, it developed several coastal blooms in the eastern and northern Baltic proper, but occurred irregularly between years. Field data show that P. minimum can grow at salinities below 5 PSU, confirming its potential to penetrate farther into the low saline part of the Baltic Sea. Biometric data show that P. minimum cells differ significantly in size between areas in the Baltic Sea.
Journal of Phycology | 2009
Annica M. Sundström; Anke Kremp; Niels Daugbjerg; Øjvind Moestrup; Marianne Ellegaard; Regina Hansen; Susanna Hajdu
A naked dinoflagellate with a unique arrangement of chloroplasts in the center of the cell was isolated from the northern Baltic proper during a spring dinoflagellate bloom (March 2005). Morphological, ultrastructural, and molecular analyses revealed this dinoflagellate to be undescribed and belonging to the genus Gymnodinium F. Stein. Gymnodinium corollarium A. M. Sundström, Kremp et Daugbjerg sp. nov. possesses features typical of Gymnodinium sensu stricto, such as nuclear chambers and an apical groove running in a counterclockwise direction around the apex. Phylogenetic analyses based on partial nuclear‐encoded LSU rDNA sequences place the species in close proximity to G. aureolum, but significant genetic distance, together with distinct morphological features, such as the position of chloroplasts, clearly justifies separation from this species. Temperature and salinity experiments revealed a preference of G. corollarium for low salinities and temperatures, confirming it to be a cold‐water species well adapted to the brackish water conditions in the Baltic Sea. At nitrogen‐deplete conditions, G. corollarium cultures produced small, slightly oval cysts resembling a previously unidentified cyst type commonly found in sediment trap samples collected from the northern and central open Baltic Sea. Based on LSU rDNA comparison, these cysts were assigned to G. corollarium. The cysts have been observed in many parts of the Baltic Sea, indicating the ecologic versatility of the species and its importance for the Baltic ecosystem.
Diatom Research | 1993
Hannelore Håkansson; Susanna Hajdu; Pauli Snoeijs; Ludmila Loginova
In order to establish the correct name for a small centric diatom which is very common in the Baltic Sea, we investigated original material of Cyclotella caspia Grunow and C. striata var. baltica Grunow from the Grunow Collection, as well as “Coscinodiscus striatus Kutz.” from the Rabenhorst exsiccata. We also compared our specimens from the Baltic Sea with figures and descriptions in the literature of C. caspia Grunow, C. caspia var. affinis Proschkina-Lavrenko & Makarova, C. choctawhatcheeana Prasad, C. hakanssoniae Wendker, C. tuberculata Makarova & Loginova, and C. litoralis Lange & Syvertsen. We show that C. caspia, C. litoralis, and C. striata var. baltica are species in their own right. The inter-relation of C. caspia var. affinis, C. affinis and C. tuberculoid are discussed. It is shown that C. choctawhatcheeana and C. hakanssoniae are conspecific and that for priority reasons the name C. choctawhatcheeana has to be used until further investigation of the species in the C. striata-complex has been...
AMBIO: A Journal of the Human Environment | 2015
Agnes M. L. Karlson; Jon Duberg; Nisha H. Motwani; Hedvig Hogfors; Isabell Klawonn; Helle Ploug; Jennie B. Svedén; Andrius Garbaras; Brita Sundelin; Susanna Hajdu; Ulf Larsson; Ragnar Elmgren; Elena Gorokhova
Filamentous, nitrogen-fixing cyanobacteria form extensive summer blooms in the Baltic Sea. Their ability to fix dissolved N2 allows cyanobacteria to circumvent the general summer nitrogen limitation, while also generating a supply of novel bioavailable nitrogen for the food web. However, the fate of the nitrogen fixed by cyanobacteria remains unresolved, as does its importance for secondary production in the Baltic Sea. Here, we synthesize recent experimental and field studies providing strong empirical evidence that cyanobacterial nitrogen is efficiently assimilated and transferred in Baltic food webs via two major pathways: directly by grazing on fresh or decaying cyanobacteria and indirectly through the uptake by other phytoplankton and microbes of bioavailable nitrogen exuded from cyanobacterial cells. This information is an essential step toward guiding nutrient management to minimize noxious blooms without overly reducing secondary production, and ultimately most probably fish production in the Baltic Sea.
PLOS ONE | 2014
Hedvig Hogfors; Nisha H. Motwani; Susanna Hajdu; Rehab El-Shehawy; Towe Holmborn; Anu Vehmaa; Jonna Engström-Öst; Andreas Brutemark; Elena Gorokhova
It is commonly accepted that summer cyanobacterial blooms cannot be efficiently utilized by grazers due to low nutritional quality and production of toxins; however the evidence for such effects in situ is often contradictory. Using field and experimental observations on Baltic copepods and bloom-forming diazotrophic filamentous cyanobacteria, we show that cyanobacteria may in fact support zooplankton production during summer. To highlight this side of zooplankton-cyanobacteria interactions, we conducted: (1) a field survey investigating linkages between cyanobacteria, reproduction and growth indices in the copepod Acartia tonsa; (2) an experiment testing relationships between ingestion of the cyanobacterium Nodularia spumigena (measured by molecular diet analysis) and organismal responses (oxidative balance, reproduction and development) in the copepod A. bifilosa; and (3) an analysis of long term (1999–2009) data testing relationships between cyanobacteria and growth indices in nauplii of the copepods, Acartia spp. and Eurytemora affinis, in a coastal area of the northern Baltic proper. In the field survey, N. spumigena had positive effects on copepod egg production and egg viability, effectively increasing their viable egg production. By contrast, Aphanizomenon sp. showed a negative relationship with egg viability yet no significant effect on the viable egg production. In the experiment, ingestion of N. spumigena mixed with green algae Brachiomonas submarina had significant positive effects on copepod oxidative balance, egg viability and development of early nauplial stages, whereas egg production was negatively affected. Finally, the long term data analysis identified cyanobacteria as a significant positive predictor for the nauplial growth in Acartia spp. and E. affinis. Taken together, these results suggest that bloom forming diazotrophic cyanobacteria contribute to feeding and reproduction of zooplankton during summer and create a favorable growth environment for the copepod nauplii.
Ecology Letters | 2014
Andrea S. Downing; Susanna Hajdu; Olle Hjerne; Saskia A. Otto; Thorsten Blenckner; Ulf Larsson; Monika Winder
Scale is a key to determining which processes drive community structure. We analyse size distributions of phytoplankton to determine time scales at which we can observe either fixed environmental characteristics underlying communities structure or competition-driven size distributions. Using multiple statistical tests, we characterise size distributions of phytoplankton from 20-year time series in two sites of the Baltic Sea. At large temporal scales (5-20 years), size distributions are unimodal, indicating that fundamental barriers to existence are here subtler than in other systems. Frequency distributions of the average size of the species weighted by biovolume are multimodal over large time scales, although this is the product of often unimodal short-term (<1 year) patterns. Our study represents a much-needed structured, high-resolution analysis of phytoplankton size distributions, revealing that short-term analyses are necessary to determine if, and how, competition shapes them. Our results provide a stepping-stone on which to further investigate the intricacies of competition and coexistence.
European Journal of Phycology | 2012
Markus Majaneva; Janne-Markus Rintala; Susanna Hajdu; Seija Hällfors; Guy Hällfors; Ann-Turi Skjevik; Sławomira Gromisz; Janina Kownacka; Susanne Busch; Jaanika Blomster
During autumn 2007, an unusual increase in an algal species belonging to the order Prymnesiales was observed throughout the Baltic Sea Proper during routine national monitoring. Electron microscopical examination of the blooming species showed two types of flat scales – small and large – that resembled those of the alternate stage of Prymnesium polylepis. No spine-bearing scales were found. The 18S rDNA sequence data (n = 20, c. 1500 bp) verified the species identification as P. polylepis. There was up to 0.5% (7 bp) variability in the P. polylepis partial 18 S rDNA sequences from the Baltic Sea. These environmental sequences differed by 0–0.35% (0–4 bp) from cultured P. polylepis (isolate UIO036), and by 1.0–3.7% from other available Prymnesium sequences. The number of cells assumed to be P. polylepis began to increase in October 2007 coincidently with significantly calm and dry weather, and at their maximum the cells accounted for over 80% of the total phytoplankton biovolume in December–January. During February–April 2008, 95% of the Prymnesiales cells were in the size class of P. polylepis (>6 µm). The species attained bloom concentrations (>1 × 106 cells l–1) from March to May 2008. The species was observed throughout the Baltic Sea, except the Bothnian Bay, Gulf of Riga and the Kattegat. No toxic effects of the bloom were observed.
PLOS ONE | 2014
Elena Gorokhova; Susanna Hajdu; Ulf Larsson
A large bloom of Prymnesium polylepis occurred in the Baltic Sea during the winter 2007 – spring 2008. Based on numerous reports of strong allelopathic effects on phytoplankton exerted by P. polylepis and its toxicity to grazers, we hypothesized that during this period negative correlations will be observed between P. polylepis and (1) main phytoplankton groups contributing to the spring bloom (i.e., diatoms and dinoflagellates), and (2) zooplankton growth and abundance. To test these hypotheses, we analyzed inter-annual variability in phytoplankton and zooplankton dynamics as well as growth indices (RNA∶DNA ratio) in dominant zooplankton in relation to the Prymnesium abundance and biomass. Contrary to the hypothesized relationships, no measurable negative responses to P. polylepis were observed for either the total phytoplankton stocks or the zooplankton community. The only negative response, possibly associated with P. polylepis occurrence, was significantly lower abundance of dinoflagellates both during and after the bloom in 2008. Moreover, contrary to the expected negative effects, there were significantly higher total phytoplankton abundance as well as significantly higher winter abundance and winter-spring RNA∶DNA ratio in dominant zooplankton species in 2008, indicating that P. polylepis bloom coincided with favourable feeding conditions for zooplankton. Thus, primary consumers, and consequently also zooplanktivores (e.g., larval fish and mysids), may benefit from haptophyte blooms, particularly in winter, when phytoplankton is scarce.