Susanna Saari
University of North Carolina at Greensboro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susanna Saari.
Fungal Diversity | 2010
Kari Saikkonen; Susanna Saari; Marjo Helander
Endophyte-grass symbiosis is generally considered to be a classic example of microbe-plant symbiosis in which the fitness of the microbial symbiont and its host plant is closely linked, and thus, presumed to align the interests of partners toward mutually beneficial cooperation. Accumulating evidence seems to suggest that defensive mutualism provides the best framework for understanding plant-endophyte interactions in general. We conducted a meta-analysis of 99 published studies on 36 plant (inc. both grass and tree species), 62 herbivore and 17 predator or parasitoid taxons to test the importance of defensive mutualism in multitrophic interactions. In general, statistical perusal revealed that we still know little about these seemingly well-studied biological interactions. The conceptual framework for endophyte-grass interactions has largely been based on endophyte-plant-herbivore studies of two, economically important, artificially selected and introduced agricultural grass species, tall fescue and perennial ryegrass, and two generalist invertebrate pests. Only 10 original publications provided data of higher trophic levels. Consistent with the defensive mutualism hypothesis, the meta-analysis indicates that endophytes slightly increase grass resistance to herbivores, and the defensive mutualism appears to be most commonly detected in systemic and vertically transmitted grass endophytes compared to horizontally transmitted tree endophytes. However, variation appears to increase when higher trophic levels are considered. In addition to taxonomical bias, the literature is strongly biased toward short-term laboratory and greenhouse experiments rather than field conditions. Thus, current literature is insufficient to capture the breadth of variability inherent in the wild grass-endophyte populations and communities, and the general importance of defensive mutualism remains to be solved in future studies.
Annals of the New York Academy of Sciences | 2011
Stanley H. Faeth; Christofer Bang; Susanna Saari
The patterns of biodiversity changes in cities are now fairly well established, although diversity changes in temperate cities are much better studied than cities in other climate zones. Generally, plant species richness often increases in cities due to importation of exotic species, whereas animal species richness declines. Abundances of some groups, especially birds and arthropods, often increase in urban areas despite declines in species richness. Although several models have been proposed for biodiversity change, the processes underlying the patterns of biodiversity in cities are poorly understood. We argue that humans directly control plants but relatively few animals and microbes—the remaining biological community is determined by this plant “template” upon which natural ecological and evolutionary processes act. As a result, conserving or reconstructing natural habitats defined by vegetation within urban areas is no guarantee that other components of the biological community will follow suit. Understanding the human‐controlled and natural processes that alter biodiversity is essential for conserving urban biodiversity. This urban biodiversity will comprise a growing fraction of the worlds repository of biodiversity in the future.
New Phytologist | 2012
Susanna Saari; Stanley H. Faeth
• Associations with microbial symbionts may lead to niche differentiation of their host. Vertically transmitted Neotyphodium endophytes of grasses often hybridize in nature. Infection by these hybrid symbionts may result in different host-plant phenotypes from those caused as a result of infection by nonhybrid symbionts. Observations of wild Arizona fescue (Festuca arizonica) populations show that hybrid Neotyphodium-infected (H+) grasses dominate in resource-poor environments, whereas nonhybrid endophyte-infected (NH+) grasses dominate in environments with more resources. We studied the hypothesis that hybridization of endophytes increases stress tolerance of the host. • To test whether hybridization of Neotyphodium affects performance and competitive abilities of the host depending on resources, we conducted a glasshouse experiment where competition, nutrients and watering were manipulated. • H+ plants had greater wet biomass than NH+ and endophyte-free plants, when grown in competition, but only in low-water and low-nutrient treatments. By contrast, NH+ plants did not perform better than H+ or endophyte-free plants regardless of the treatment combination. • Our results suggest that hybridization of symbiotic Neotyphodium endophytes may increase competitive potential of the host in stressful environments and that this hybridization may be underlying niche expansion of Arizona fescue in the environments with low resources.
Microbial Ecology | 2010
Susanna Saari; Marjo Helander; Stanley H. Faeth; Kari Saikkonen
Fungal endophytes of grasses are often included in agricultural management and in ecological studies of natural grass populations. In European agriculture and ecological studies, however, grass endophytes are largely ignored. In this study, we determined endophyte infection frequencies of 13 European cultivars and 49 wild tall fescue (Schedonorus phoenix) populations in Northern Europe. We then examined seed production and seed predation of endophyte-infected (E+) and endophyte-free (E−) tall fescue (in wild grass populations and in a field experiment) and meadow fescue (Schedonorus pratensis; in a field experiment only). Endophytes were detected in only one of the 13 cultivars. In contrast, >90% of wild tall fescue plants harbored endophytes in 45 wild populations but were absent in three inland populations in Estonia. In three wild tall fescue study sites, 17%, 22%, and 56% of the seeds were preyed upon by the cocksfoot moth. Endophyte infection did not affect seed mass of tall fescue in the field experiment. However, seed predation was lower in E+ than E− grasses in the two tall fescue populations with higher predation rates. For meadow fescue, the mean number of seeds from E+ plants was higher than E− plants, but E− and E+ seeds had equal rates of predation by the moth. Our results suggest that the effects of grass endophytes on seed production and cocksfoot moth seed predation vary considerably among grass species, and the effects may depend on herbivore pressure and other environmental conditions.
Journal of Chemical Ecology | 2015
Tatsiana Shymanovich; Susanna Saari; Mary E. Lovin; Alan K. Jarmusch; Scott A. Jarmusch; Ashleigh M. Musso; Nikki D. Charlton; Carolyn A. Young; Nadja B. Cech; Stanley H. Faeth
Epichloid endophytes are well known symbionts of many cool-season grasses that may alleviate environmental stresses for their hosts. For example, endophytes produce alkaloid compounds that may be toxic to invertebrate or vertebrate herbivores. Achnatherum robustum, commonly called sleepygrass, was aptly named due to the presence of an endophyte that causes toxic effects to livestock and wildlife. Variation in alkaloid production observed in two A. robustum populations located near Weed and Cloudcroft in the Lincoln National Forest, New Mexico, suggests two different endophyte species are present in these populations. Genetic analyses of endophyte-infected samples revealed major differences in the endophyte alkaloid genetic profiles from the two populations, which were supported with chemical analyses. The endophyte present in the Weed population was shown to produce chanoclavine I, paspaline, and terpendoles, so thus resembles the previously described Epichloë funkii. The endophyte present in the Cloudcroft population produces chanoclavineI, ergonovine, lysergic acid amide, and paspaline, and is an undescribed endophyte species. We observed very low survival rates for aphids feeding on plants infected with the Cloudcroft endophyte, while aphid survival was better on endophyte infected plants in the Weed population. This observation led to the hypothesis that the alkaloid ergonovine is responsible for aphid mortality. Direct testing of aphid survival on oat leaves supplemented with ergonovine provided supporting evidence for this hypothesis. The results of this study suggest that alkaloids produced by the Cloudcroft endophyte, specifically ergonovine, have insecticidal properties.
Biocontrol | 2017
Aimee C. McKinnon; Susanna Saari; Maria E. Moran-Diez; Nicolai V. Meyling; Maya Raad; Travis R. Glare
In the last decade there has been increased focus on the potential of endophytic Beauveria bassiana for the biocontrol of insect herbivores. Generally, detection of endophytes is acknowledged to be problematic and recovery method-dependent. Herein, we critically analyse the methodology reported for the detection of B. bassiana as endophytes following experimental inoculation. In light of the methodology, we further review the effects of endophytic B. bassiana on insect herbivores. Our review indicated the need for stringent protocols for surface sterilisation including thorough experimental controls. For molecular detection protocols by PCR, residual DNA from surface inocula must also be considered. The biocontrol potential of B. bassiana endophytes appears promising although both negative and neutral effects on insect herbivores were reported and there remains ambiguity with respect to the location and mode of action of the fungus in planta. We recommend that future studies adopt multiple techniques, including culture dependent and independent techniques for endophyte detection and elucidate the mechanisms involved against insect herbivores.
Journal of Pharmaceutical and Biomedical Analysis | 2016
Alan K. Jarmusch; Ashleigh M. Musso; Tatsiana Shymanovich; Scott A. Jarmusch; Miranda J. Weavil; Mary E. Lovin; Brandie M. Ehrmann; Susanna Saari; David E. Nichols; Stanley H. Faeth; Nadja B. Cech
Ergot alkaloids are mycotoxins with an array of biological effects. With this study, we investigated for the first time the application of atmospheric pressure photoionization (APPI) as an ionization method for LC-MS analysis of ergot alkaloids, and compared its performance to that of the more established technique of electrospray ionization (ESI). Samples of the grass Achnatherum robustum infected with the ergot producing Epichloë fungus were extracted using cold methanol and subjected to reserved-phase HPLC-ESI-MS and HPLC-APPI-MS analysis. The ergot alkaloids ergonovine and lysergic acid amide were detected in these samples, and quantified via external calibration. Validation parameters were recorded in accordance with ICH guidelines. A triple quadrupole MS operated in multiple reaction monitoring yielded the lowest detection limits. The performance of APPI and ESI methods was comparable. Both methods were subject to very little matrix interference, with percent recoveries ranging from 82% to 100%. As determined with HPLC-APPI-MS quantification, lysergic acid amide and ergonovine were extracted from an A. robustum sample infected with the Epichloë fungus at concentrations of 1.143±0.051 ppm and 0.2822±0.0071 ppm, respectively. There was no statistically significant difference between these concentrations and those determined using ESI for the same samples.
Urban Ecosystems | 2016
Susanna Saari; Scott J. Richter; Michael Higgins; Martina Oberhofer; Andrew Jennings; Stanley H. Faeth
The widely accepted consensus is that urbanization increases abundance but reduces species richness of animals. This assumption is the premise for empirical tests and theoretical explanations. We studied the association of urbanization with abundance and species richness of different animal taxa in 20 and 26 published articles reporting abundances and richness, respectively via meta-analysis. Because some articles had multiple estimates, we analyzed 40 and 58 estimates of abundance and richness, respectively. Contrary to conventional wisdom, the overall abundance of terrestrial animals was not higher in urban areas, but instead actually lower, while we failed to confirm the conventional thinking of lower species richness with urbanization. These findings cannot, however, be generalized across all cities and animal species, as conflicting differences were reported among geographical regions, animal taxa. Our results question the conventional wisdom that urbanization generally increases abundances while reducing species richness, and highlights the variability of urbanization effects on diversity among taxa and geographic regions.
Ecology | 2017
Stanley H. Faeth; Martina Oberhofer; Susanna Saari; Kristin E. Haskins; Tatsiana Shymanovich
Hybridization is common among plants, animals and microbes. However, the ecological consequences of hybridization for microbes are far less understood than for plants and animals. For symbiotic Epichloë fungi, hybridization is widespread and may augment the well-known benefits of the endophytes to their grass hosts, especially in stressful environments. We tested the hybrid fitness hypothesis (HFH) that hybrid endophytes enhance fitness in stressful environments relative to non-hybrid endophytes. In a long-term field experiment, we monitored growth and reproduction of hybrid-infected (H+), non-hybrid infected (NH+), naturally endophyte free (E-) plants and those plants from which the endophyte had been experimentally removed (H- and NH-) in resource-rich and resource-poor environments. Infection by both endophyte species enhanced growth and reproduction. H+ plants outperformed NH+ plants in terms of growth by the end of the experiment, supporting HFH. However, H+ plants only outperformed NH+ plants in the resource-rich treatment, contrary to HFH. Plant genotypes associated with each endophyte species had strong effects on growth and reproduction. Our results provide some support the HFH hypothesis but not based upon adaptation to stressful environments. Our results reinforce the notion of a complex interplay between endophyte and plant genotype and environmental factors that determine fitness of the symbiotum.
Fungal Ecology | 2012
Stanley H. Faeth; Susanna Saari