Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susannah M. Burrows is active.

Publication


Featured researches published by Susannah M. Burrows.


Tellus B | 2012

Primary biological aerosol particles in the atmosphere: a review

Viviane R. Després; J. Alex Huffman; Susannah M. Burrows; C. Hoose; A. S. Safatov; G. A. Buryak; Janine Fröhlich-Nowoisky; Wolfgang Elbert; Meinrat O. Andreae; Ulrich Pöschl; Ruprecht Jaenicke

Abstract Atmospheric aerosol particles of biological origin are a very diverse group of biological materials and structures, including microorganisms, dispersal units, fragments and excretions of biological organisms. In recent years, the impact of biological aerosol particles on atmospheric processes has been studied with increasing intensity, and a wealth of new information and insights has been gained. This review outlines the current knowledge on major categories of primary biological aerosol particles (PBAP): bacteria and archaea, fungal spores and fragments, pollen, viruses, algae and cyanobacteria, biological crusts and lichens and others like plant or animal fragments and detritus. We give an overview of sampling methods and physical, chemical and biological techniques for PBAP analysis (cultivation, microscopy, DNA/RNA analysis, chemical tracers, optical and mass spectrometry, etc.). Moreover, we address and summarise the current understanding and open questions concerning the influence of PBAP on the atmosphere and climate, i.e. their optical properties and their ability to act as ice nuclei (IN) or cloud condensation nuclei (CCN). We suggest that the following research activities should be pursued in future studies of atmospheric biological aerosol particles: (1) develop efficient and reliable analytical techniques for the identification and quantification of PBAP; (2) apply advanced and standardised techniques to determine the abundance and diversity of PBAP and their seasonal variation at regional and global scales (atmospheric biogeography); (3) determine the emission rates, optical properties, IN and CCN activity of PBAP in field measurements and laboratory experiments; (4) use field and laboratory data to constrain numerical models of atmospheric transport, transformation and climate effects of PBAP.


Nature | 2015

A marine biogenic source of atmospheric ice-nucleating particles

Theodore W. Wilson; L. A. Ladino; Peter A. Alpert; Mark N. Breckels; Ian M. Brooks; J. Browse; Susannah M. Burrows; Kenneth S. Carslaw; J. Alex Huffman; Christopher Judd; Wendy P. Kilthau; Ryan H. Mason; Gordon McFiggans; Lisa A. Miller; Juan J. Nájera; Elena Polishchuk; Stuart Rae; C. L. Schiller; Meng Si; Jesus Vergara Temprado; Thomas F. Whale; J. P. S. Wong; Oliver Wurl; J. D. Yakobi-Hancock; Jonathan P. D. Abbatt; Josephine Y. Aller; Allan K. Bertram; Daniel A. Knopf; Benjamin J. Murray

The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties. The formation of ice in clouds is facilitated by the presence of airborne ice-nucleating particles. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice. Sea-spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea–air interface or sea surface microlayer. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice-nucleating material is probably biogenic and less than approximately 0.2 micrometres in size. We find that exudates separated from cells of the marine diatom Thalassiosira pseudonana nucleate ice, and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice-nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol, in combination with our measurements, suggest that marine organic material may be an important source of ice-nucleating particles in remote marine environments such as the Southern Ocean, North Pacific Ocean and North Atlantic Ocean.


Science Advances | 2015

Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo

Daniel T. McCoy; Susannah M. Burrows; Robert Wood; Daniel P. Grosvenor; Scott Elliott; Po-Lun Ma; P. J. Rasch; Dennis L. Hartmann

Sulfate and organic mass in sea spray explain more than half of the variability in Southern Ocean cloud droplet concentration. Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties—ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in Nd is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35o to 45oS) and by organic matter in sea spray aerosol at higher latitudes (45o to 55oS). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m–2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.


Journal of Geophysical Research | 2014

Sources and composition of submicron organic mass in marine aerosol particles

Amanda A. Frossard; Lynn M. Russell; Susannah M. Burrows; Scott Elliott; Timothy S. Bates; Patricia K. Quinn

The sources and composition of atmospheric marine aerosol particles (aMA) have been investigated with a range of physical and chemical measurements from open-ocean research cruises. This study uses the characteristic functional group composition (from Fourier transform infrared spectroscopy) of aMA from five ocean regions to show the following: (i) The organic functional group composition of aMA that can be identified as mainly atmospheric primary marine (ocean derived) aerosol particles (aPMA) is 65 ± 12% hydroxyl, 21 ± 9% alkane, 6 ± 6% amine, and 7 ± 8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%–25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. (ii) The organic composition of aPMA is nearly identical to model-generated primary marine aerosol particles from bubbled seawater (gPMA, which has 55 ± 14% hydroxyl, 32 ± 14% alkane, and 13 ± 3% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the gPMA remained nearly constant over a broad range of chlorophyll a concentrations, the gPMA alkane group fraction appeared to increase with chlorophyll a concentrations (r = 0.66). gPMA from productive seawater had a larger fraction of alkane functional groups (42 ± 9%) compared to gPMA from nonproductive seawater (22 ± 10%), perhaps due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater organic mass hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production.


Environmental Research Letters | 2014

Prospects for simulating macromolecular surfactant chemistry at the ocean–atmosphere boundary

Scott Elliott; Susannah M. Burrows; Clara Deal; Xiaohong Liu; Michael S. Long; Oluwaseun Ogunro; Lynn M. Russell; Oliver W. Wingenter

Biogenic lipids and polymers are surveyed for their ability to adsorb at the water–air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea–air interface into aerosol–cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification.


Proceedings of the National Academy of Sciences of the United States of America | 2017

The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles

Xiaofei Wang; Grant B. Deane; Kathryn A. Moore; Olivia S. Ryder; M. Dale Stokes; Charlotte M. Beall; Douglas B. Collins; Mitchell V. Santander; Susannah M. Burrows; Camille M. Sultana; Kimberly A. Prather

Significance Submicrometer sea spray aerosol (SSA) particles play a critical role in determining cloud properties in marine environments. Typically, it is assumed that submicrometer SSA particles mainly originate from bubble-cap films bursting at the sea surface. However, we show that in addition to this formation pathway, a substantial fraction of submicrometer SSA particles are also produced from jet drops. Using an experimental approach that relies on differences in the electrical mobility of jet and film drops, we show that jet drops contribute up to 43% of total submicrometer SSA number concentrations. As shown herein, these two different production pathways result in an externally mixed submicrometer SSA population with two distinct chemical compositions with significantly different ice nucleating activities. The oceans represent a significant global source of atmospheric aerosols. Sea spray aerosol (SSA) particles comprise sea salts and organic species in varying proportions. In addition to size, the overall composition of SSA particles determines how effectively they can form cloud droplets and ice crystals. Thus, understanding the factors controlling SSA composition is critical to predicting aerosol impacts on clouds and climate. It is often assumed that submicrometer SSAs are mainly formed by film drops produced from bursting bubble-cap films, which become enriched with hydrophobic organic species contained within the sea surface microlayer. In contrast, jet drops formed from the base of bursting bubbles are postulated to mainly produce larger supermicrometer particles from bulk seawater, which comprises largely salts and water-soluble organic species. However, here we demonstrate that jet drops produce up to 43% of total submicrometer SSA number concentrations, and that the fraction of SSA produced by jet drops can be modulated by marine biological activity. We show that the chemical composition, organic volume fraction, and ice nucleating ability of submicrometer particles from jet drops differ from those formed from film drops. Thus, the chemical composition of a substantial fraction of submicrometer particles will not be controlled by the composition of the sea surface microlayer, a major assumption in previous studies. This finding has significant ramifications for understanding the factors controlling the mixing state of submicrometer SSA particles and must be taken into consideration when predicting SSA impacts on clouds and climate.


Frontiers in Marine Science | 2017

The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer

Anja Engel; Hermann W. Bange; Michael Cunliffe; Susannah M. Burrows; Gernot Friedrichs; Luisa Galgani; Hartmut Herrmann; Norbert Hertkorn; Martin Johnson; Peter S. Liss; Patricia K. Quinn; Markus Schartau; Alexander Soloviev; Christian Stolle; Robert C. Upstill-Goddard; Manuela van Pinxteren; Birthe Zäncker

Despite the huge extent of the oceans surface, until now relatively little attention has been paid to the sea surface microlayer (SML) as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the oceans surface, in particular involving the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.


Geophysical Research Letters | 2016

OCEANFILMS-2: Representing coadsorption of saccharides in marine films and potential impacts on modeled marine aerosol chemistry

Susannah M. Burrows; Eric A. Gobrogge; Li Fu; Katie Link; Scott Elliott; Hongfei Wang; Robert A. Walker

Here we show that the addition of chemical interactions between soluble monosaccharides and an insoluble lipid surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the alkane:hydroxyl mass ratio in modeled sea spray organic matter is reduced from a median of 2.73 to a range of 0.41–0.69, reducing the discrepancy with previous Fourier transform infrared spectroscopy (FTIR) observations of clean marine aerosol (ratio: 0.24–0.38). The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5–0.7 for submicron sea spray particles over highly active phytoplankton blooms. Sum frequency generation experiments support the modeling approach by demonstrating that soluble monosaccharides can strongly adsorb to a lipid monolayer likely via Coulomb interactions under appropriate conditions. These laboratory findings motivate further research to determine the relevance of coadsorption mechanisms for real-world, sea spray aerosol production.


Biogeochemistry | 2015

Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

Oluwaseun Ogunro; Susannah M. Burrows; Scott Elliott; Amanda A. Frossard; Forrest M. Hoffman; Robert T. Letscher; J. Keith Moore; Lynn M. Russell; Shanlin Wang; Oliver W. Wingenter

Organic macromolecules constitute a high percentage of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean ecodynamics model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed for labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of proteins, polysaccharides and refractory heteropolycondensates. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally well within an order of magnitude. Global distributions are further estimated for both fractional coverage of bubble films at the air–water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant patterns. These results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.


Atmospheric Chemistry and Physics | 2012

Ice nuclei in marine air : bioparticles or dust?

Susannah M. Burrows; C. Hoose; Ulrich Pöschl; M. G. Lawrence

Ice nuclei (IN) concentrations impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to ice nuclei IN sources in marine environments, although anecdotal evidence suggests that IN populations in remote marine regions may be dominated by a biological particles associated with sea spray. It is also known that certain plankton species can act as IN at comparatively high temperatures, while others do not. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the possible global distribution of marine biological ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biological IN distributions and dust IN distributions, we predict strong regional differences in the importance of marine biological IN relative to dust IN. In particular, our analysis suggests that marine biological IN may play a dominant role in determining IN concentrations over the Southern Ocean and possibly over regions of the Arctic, while dust IN likely dominate in continental outflow regions. Marine biological IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production. Devices for artificial sea-spray production could potentially be designed to include high concentrations of biological particulate matter in the generated spray, which could dramatically increase the concentrations of IN. To our knowledge, this potential has previously not been considered in such proposals. A small number of previous studies indicate that Arctic clouds in particular may be highly sensitive to IN concentrations, with impacts on radiative properties, precipitation and cloud lifetime, but further study will be needed to evaluate the sensitivity of marine clouds to a possible biological IN source. We believe these results will help motivate further study of marine biological IN. Important routes for further study include laboratory measurements of the ice nucleating activity of plankton species and other marine particulate matter, and field studies using modern instrumentation (such as a CFDC combined with mass spectrometry) to more accurately count and analyze IN in the remote marine boundary layer.

Collaboration


Dive into the Susannah M. Burrows's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Elliott

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip J. Rasch

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. Hoose

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge