Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanne Bolte is active.

Publication


Featured researches published by Susanne Bolte.


The EMBO Journal | 2005

Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron

Viviane Lanquar; Françoise Lelièvre; Susanne Bolte; Cécile Hamès; Carine Alcon; Dieter Neumann; Gérard Vansuyt; Catherine Curie; Astrid Schröder; Ute Krämer; Hélène Barbier-Brygoo; Sébastien Thomine

Iron (Fe) is necessary for all living cells, but its bioavailability is often limited. Fe deficiency limits agriculture in many areas and affects over a billion human beings worldwide. In mammals, NRAMP2/DMT1/DCT1 was identified as a major pathway for Fe acquisition and recycling. In plants, AtNRAMP3 and AtNRAMP4 are induced under Fe deficiency. The similitude of AtNRAMP3 and AtNRAMP4 expression patterns and their common targeting to the vacuole, together with the lack of obvious phenotype in nramp3‐1 and nramp4‐1 single knockout mutants, suggested a functional redundancy. Indeed, the germination of nramp3 nramp4 double mutants is arrested under low Fe nutrition and fully rescued by high Fe supply. Mutant seeds have wild type Fe content, but fail to retrieve Fe from the vacuolar globoids. Our work thus identifies for the first time the vacuole as an essential compartment for Fe storage in seeds. Our data indicate that mobilization of vacuolar Fe stores by AtNRAMP3 and AtNRAMP4 is crucial to support Arabidopsis early development until efficient systems for Fe acquisition from the soil take over.


Journal of Cell Science | 2004

The N-myristoylated Rab-GTPase m-Rabmc is involved in post-Golgi trafficking events to the lytic vacuole in plant cells

Susanne Bolte; Spencer Brown; Béatrice Satiat-Jeunemaitre

We report on the sub-cellular localisation and function of m-Rabmc, a N-myristoylated plant-specific Rab-GTPase previously characterised at the molecular level and also by structural analysis in Mesembryanthemum crystallinum. By confocal laser scanning microscopy, we identified m-Rabmc predominantly on the prevacuolar compartment of the lytic vacuole but also on the Golgi apparatus in various plant cell types. Two complementary approaches were used immunocytochemistry and cyan fluorescent protein (CFP)/yellow fluorescent protein (YFP)-fusion proteins. Co-localisation studies of m-Rabmc with a salinity stress modulated integral calcium-ATPase suggest involvement of m-Rabmc in a plant-specific transport pathway to the prevacuolar compartment of the lytic vacuole. This hypothesis was strengthened by the inhibition of the transport of aleurain fused to green fluorescent protein (GFP), a marker of the lytic vacuole, in the presence of the dominant negative mutant m-Rabmc(N147I) in Arabidopsis thaliana protoplasts. The inhibitory effect of m-Rabmc(N147I) was specific for the transport pathway to the lytic vacuole, since the transport of chitinase-YFP, a marker for the neutral vacuole, was not hindered by the mutant.


Journal of Bioenergetics and Biomembranes | 2003

New Insight into the Structure and Regulation of the Plant Vacuolar H+-ATPase

Christoph Kluge; Joachim Lahr; Miriam Hanitzsch; Susanne Bolte; Dortje Golldack; Karl-Josef Dietz

Plant cells are characterized by a highly active secretory system that includes the large central vacuole found in most differentiated tissues. The plant vacuolar H+-ATPase plays an essential role in maintaining the ionic and metabolic gradients across endomembranes, in activating transport processes and vesicle dynamics, and, hence, is indispensable for plant growth, development, and adaptation to changing environmental conditions. The review summarizes recent advances in elucidating the structure, subunit composition, localization, and regulation of plant V-ATPase. Emerging knowledge on subunit isogenes from Arabidopsis and rice genomic sequences as well as from Mesembryanthemum illustrates another level of complexity, the regulation of isogene expression and function of subunit isoforms. To this end, the review attempts to define directions of future research on plant V-ATPase.


Journal of Virology | 2008

Nuclear Localization of Cytoplasmic Poly(A)-Binding Protein upon Rotavirus Infection Involves the Interaction of NSP3 with eIF4G and RoXaN

Maya Harb; Michelle M. Becker; Damien Vitour; Carolina H. Baron; Patrice Vende; Spencer C. Brown; Susanne Bolte; Stefan T. Arold; Didier Poncet

ABSTRACT Rotavirus nonstructural protein NSP3 interacts specifically with the 3′ end of viral mRNAs, with the eukaryotic translation initiation factor eIF4G, and with RoXaN, a cellular protein of yet-unknown function. By evicting cytoplasmic poly(A) binding protein (PABP-C1) from translation initiation complexes, NSP3 shuts off the translation of cellular polyadenylated mRNAs. We show here that PABP-C1 evicted from eIF4G by NSP3 accumulates in the nucleus of rotavirus-infected cells. Through modeling of the NSP3-RoXaN complex, we have identified mutations in NSP3 predicted to interrupt its interaction with RoXaN without disturbing the NSP3 interaction with eIF4G. Using these NSP3 mutants and a deletion mutant unable to associate with eIF4G, we show that the nuclear localization of PABP-C1 not only is dependent on the capacity of NSP3 to interact with eIF4G but also requires the interaction of NSP3 with a specific region in RoXaN, the leucine- and aspartic acid-rich (LD) domain. Furthermore, we show that the RoXaN LD domain functions as a nuclear export signal and that RoXaN tethers PABP-C1 with RNA. This work identifies RoXaN as a cellular partner of NSP3 involved in the nucleocytoplasmic localization of PABP-C1.


BMC Cell Biology | 2004

Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex

Christoph Kluge; Thorsten Seidel; Susanne Bolte; Shanti S. Sharma; Miriam Hanitzsch; Béatrice Satiat-Jeunemaitre; Joachim Roß; Markus Sauer; Dortje Golldack; Karl-Josef Dietz

BackgroundVacuolar H+-ATPases are large protein complexes of more than 700 kDa that acidify endomembrane compartments and are part of the secretory system of eukaryotic cells. They are built from 14 different (VHA)-subunits. The paper addresses the question of sub-cellular localisation and subunit composition of plant V-ATPase in vivo and in vitro mainly by using colocalization and fluorescence resonance energy transfer techniques (FRET). Focus is placed on the examination and function of the 95 kDa membrane spanning subunit VHA-a. Showing similarities to the already described Vph1 and Stv1 vacuolar ATPase subunits from yeast, VHA-a revealed a bipartite structure with (i) a less conserved cytoplasmically orientated N-terminus and (ii) a membrane-spanning C-terminus with a higher extent of conservation including all amino acids shown to be essential for proton translocation in the yeast. On the basis of sequence data VHA-a appears to be an essential structural and functional element of V-ATPase, although previously a sole function in assembly has been proposed.ResultsTo elucidate the presence and function of VHA-a in the plant complex, three approaches were undertaken: (i) co-immunoprecipitation with antibodies directed to epitopes in the N- and C-terminal part of VHA-a, respectively, (ii) immunocytochemistry approach including co-localisation studies with known plant endomembrane markers, and (iii) in vivo-FRET between subunits fused to variants of green fluorescence protein (CFP, YFP) in transfected cells.ConclusionsAll three sets of results show that V-ATPase contains VHA-a protein that interacts in a specific manner with other subunits. The genomes of plants encode three genes of the 95 kDa subunit (VHA-a) of the vacuolar type H+-ATPase. Immuno-localisation of VHA-a shows that the recognized subunit is exclusively located on the endoplasmic reticulum. This result is in agreement with the hypothesis that the different isoforms of VHA-a may localize on distinct endomembrane compartments, as it was shown for its yeast counterpart Vph1.


Plant and Cell Physiology | 2011

Distinct Lytic Vacuolar Compartments are Embedded Inside the Protein Storage Vacuole of Dry and Germinating Arabidopsis thaliana Seeds

Susanne Bolte; Viviane Lanquar; Marie-Noëlle Soler; Azeez Beebo; Béatrice Satiat-Jeunemaitre; Karim Bouhidel; Sébastien Thomine

Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophosphatase (V-PPase) and the metal transporter NRAMP4. They further indicate that this compartment disappears after stratification. It is then replaced by a newly formed lytic compartment, labeled by γ-TIP and V-PPase but not AtNRAMP4, which occupies a larger volume as germination progresses. Altogether, our results indicate the successive occurrence of two different lytic compartments in the protein storage vacuoles of germinating Arabidopsis cells. We propose that the first one corresponds to globoids specialized in mineral storage and the second one is at the origin of the central lytic vacuole in these cells.


Plant Journal | 2010

Exploring plant endomembrane dynamics using the photoconvertible protein Kaede

Spencer C. Brown; Susanne Bolte; Marie Gaudin; Cláudia Pereira; Jessica Marion; Marie-Noëlle Soler; Béatrice Satiat-Jeunemaitre

Photoactivatable and photoconvertible fluorescent proteins capable of pronounced light-induced spectral changes are a powerful addition to the fluorescent protein toolbox of the cell biologist. They permit specific tracking of one subcellular structure (organelle or cell subdomain) within a differentially labelled population. They also enable pulse-chase analysis of protein traffic. The Kaede gene codes for a tetrameric protein found in the stony coral Trachyphyllia geoffroyi, which emits green fluorescence that irreversibly shifts to red following radiation with UV or violet light. We report here the use of Kaede to explore the plant secretory pathway. Kaede versions of the Golgi marker sialyl-transferase (ST-Kaede) and of the vacuolar pathway marker cardosin A (cardA-Kaede) were engineered. Several optical devices enabling photoconversion and observation of Kaede using these two constructs were assessed to optimize Kaede-based imaging protocols. Photoconverted ST-Kaede red-labelled organelles can be followed within neighbouring populations of non-converted green Golgi stacks, by their gradual development of orange/yellow coloration from de novo synthesis of Golgi proteins (green). Results highlight some aspects on the dynamics of the plant Golgi. For plant bio-imaging, the photoconvertible Kaede offers a powerful tool to track the dynamic behaviour of designated subpopulations of Golgi within living cells, while visualizing the de novo formation of proteins and structures, such as a Golgi stack.


Brain | 2016

CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease.

Lydie Boussicault; Sandro Alves; Antonin Lamazière; Anabelle Planques; Nicolas Heck; Lara Moumné; Gaëtan Despres; Susanne Bolte; Amélie Hu; Christiane Pagès; Laurie Galvan; Françoise Piguet; Patrick Aubourg; Nathalie Cartier; Jocelyne Caboche; Sandrine Betuing

Dysregulation of cholesterol synthesis is implicated in Huntington’s disease. Boussicault et al. show that expression of CYP46A1, the rate-limiting enzyme in cholesterol degradation, is reduced in patients and a mouse model. Restoration of CYP46A1 re-establishes normal cholesterol levels and is neuroprotective, suggesting that targeting cholesterol degradation may have therapeutic potential.


Molecular Psychiatry | 2015

The absence of VGLUT3 predisposes to cocaine abuse by increasing dopamine and glutamate signaling in the nucleus accumbens.

Diana Yae Sakae; Fabio Marti; S Lecca; F Vorspan; Elena Martín-García; Lydie J. Morel; Annabelle Henrion; Javier Gutiérrez-Cuesta; A Besnard; N Heck; Etienne Herzog; Susanne Bolte; Vânia F. Prado; Marco A. M. Prado; Frank Bellivier; C B Eap; S Crettol; Peter Vanhoutte; Jocelyne Caboche; Alain Gratton; Luc Moquin; Bruno Giros; Rafael Maldonado; Stephanie Daumas; Manuel Mameli; Stéphane Jamain; S. El Mestikawy

Tonically active cholinergic interneurons (TANs) from the nucleus accumbens (NAc) are centrally involved in reward behavior. TANs express a vesicular glutamate transporter referred to as VGLUT3 and thus use both acetylcholine and glutamate as neurotransmitters. The respective roles of each transmitter in the regulation of reward and addiction are still unknown. In this study, we showed that disruption of the gene that encodes VGLUT3 (Slc17a8) markedly increased cocaine self-administration in mice. Concomitantly, the amount of dopamine (DA) release was strongly augmented in the NAc of VGLUT3−/− mice because of a lack of signaling by metabotropic glutamate receptors. Furthermore, dendritic spines and glutamatergic synaptic transmission on medium spiny neurons were increased in the NAc of VGLUT3−/− mice. Increased DA and glutamate signaling in the NAc are hallmarks of addiction. Our study shows that TANs use glutamate to reduce DA release and decrease reinforcing properties of cocaine in mice. Interestingly, we also observed an increased frequency of rare variations in SLC17A8 in a cohort of severe drug abusers compared with controls. Our findings identify VGLUT3 as an unexpected regulator of drug abuse.


PLOS ONE | 2015

Improving axial resolution in confocal microscopy with new high refractive index mounting media.

Coralie Fouquet; Jean-François Gilles; Nicolas Heck; Marc Dos Santos; Richard Schwartzmann; Vidjeacoumary Cannaya; Marie-Pierre Morel; Robert Stephen Davidson; Alain Trembleau; Susanne Bolte

Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

Collaboration


Dive into the Susanne Bolte's collaboration.

Top Co-Authors

Avatar

Béatrice Satiat-Jeunemaitre

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Kluge

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Damien Cladière

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge