Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanne Brodesser is active.

Publication


Featured researches published by Susanne Brodesser.


Cell Metabolism | 2014

Obesity-Induced CerS6-Dependent C16:0 Ceramide Production Promotes Weight Gain and Glucose Intolerance

Sarah M. Turpin; Hayley T. Nicholls; Diana M. Willmes; Arnaud Mourier; Susanne Brodesser; Claudia M. Wunderlich; Jan Mauer; Elaine Xu; Philipp Hammerschmidt; Hella S. Brönneke; Aleksandra Trifunovic; Giuseppe LoSasso; F. Thomas Wunderlich; Jan-Wilhelm Kornfeld; Matthias Blüher; Martin Krönke; Jens C. Brüning

Ceramides increase during obesity and promote insulin resistance. Ceramides vary in acyl-chain lengths from C14:0 to C30:0 and are synthesized by six ceramide synthase enzymes (CerS1-6). It remains unresolved whether obesity-associated alterations of specific CerSs and their defined acyl-chain length ceramides contribute to the manifestation of metabolic diseases. Here we reveal that CERS6 mRNA expression and C16:0 ceramides are elevated in adipose tissue of obese humans, and increased CERS6 expression correlates with insulin resistance. Conversely, CerS6-deficient (CerS6(Δ/Δ)) mice exhibit reduced C16:0 ceramides and are protected from high-fat-diet-induced obesity and glucose intolerance. CerS6 deletion increases energy expenditure and improves glucose tolerance, not only in CerS6(Δ/Δ) mice, but also in brown adipose tissue- (CerS6(ΔBAT)) and liver-specific (CerS6(ΔLIVER)) CerS6 knockout mice. CerS6 deficiency increases lipid utilization in BAT and liver. These experiments highlight CerS6 inhibition as a specific approach for the treatment of obesity and type 2 diabetes mellitus, circumventing the side effects of global ceramide synthesis inhibition.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Hypothalamic and pituitary c-Jun N-terminal kinase 1 signaling coordinately regulates glucose metabolism.

Bengt F. Belgardt; Jan Mauer; F. Thomas Wunderlich; Marianne B. Ernst; Martin Pal; Gabriele Spohn; Hella S. Brönneke; Susanne Brodesser; Brigitte Hampel; Astrid Schauss; Jens C. Brüning

c-Jun N-terminal kinase (JNK) 1-dependent signaling plays a crucial role in the development of obesity-associated insulin resistance. Here we demonstrate that JNK activation not only occurs in peripheral tissues, but also in the hypothalamus and pituitary of obese mice. To resolve the importance of JNK1 signaling in the hypothalamic/pituitary circuitry, we have generated mice with a conditional inactivation of JNK1 in nestin-expressing cells (JNK1ΔNES mice). JNK1ΔNES mice exhibit improved insulin sensitivity both in the CNS and in peripheral tissues, improved glucose metabolism, as well as protection from hepatic steatosis and adipose tissue dysfunction upon high-fat feeding. Moreover, JNK1ΔNES mice also show reduced somatic growth in the presence of reduced circulating growth hormone (GH) and insulin-like growth factor 1 (IGF1) concentrations, as well as increased thyroid axis activity. Collectively, these experiments reveal an unexpected, critical role for hypothalamic/pituitary JNK1 signaling in the coordination of metabolic/endocrine homeostasis.


Journal of Investigative Dermatology | 2013

Impaired epidermal ceramide synthesis causes autosomal recessive congenital ichthyosis and reveals the importance of ceramide acyl chain length.

Katja-Martina Eckl; Rotem Tidhar; Holger Thiele; Vinzenz Oji; Ingrid Hausser; Susanne Brodesser; Marie-Luise Preil; Aysel Önal-Akan; Friedrich Stock; Dietmar Müller; Kerstin Becker; Ramona Casper; Gudrun Nürnberg; Janine Altmüller; Peter Nürnberg; Heiko Traupe; Anthony H. Futerman; Hans Christian Hennies

The barrier function of the human epidermis is supposed to be governed by lipid composition and organization in the stratum corneum. Disorders of keratinization, namely ichthyoses, are typically associated with disturbed barrier activity. Using autozygosity mapping and exome sequencing, we have identified a homozygous missense mutation in CERS3 in patients with congenital ichthyosis characterized by collodion membranes at birth, generalized scaling of the skin, and mild erythroderma. We demonstrate that the mutation inactivates ceramide synthase 3 (CerS3), which is synthesized in skin and testis, in an assay of N-acylation with C26-CoA, both in patient keratinocytes and using recombinant mutant proteins. Moreover, we show a specific loss of ceramides with very long acyl chains from C26 up to C34 in terminally differentiating patient keratinocytes, which is in line with findings from a recent CerS3-deficient mouse model. Analysis of reconstructed patient skin reveals disturbance of epidermal differentiation with an earlier maturation and an impairment of epidermal barrier function. Our findings demonstrate that synthesis of very long chain ceramides by CerS3 is a crucial early step for the skin barrier formation and link disorders presenting with congenital ichthyosis to defects in sphingolipid metabolism and the epidermal lipid architecture.


Journal of Cell Biology | 2015

Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels

Arnaud Mourier; Elisa Motori; Tobias Brandt; Marie Lagouge; Ilian Atanassov; Anne Galinier; Gunter Rappl; Susanne Brodesser; Kjell Hultenby; Christoph Dieterich; Nils-Göran Larsson

Mitofusin 2 plays an unexpected role in maintaining the terpenoid biosynthesis pathway and is necessary for mitochondrial coenzyme Q biosynthesis.


Journal of Cellular and Molecular Medicine | 2011

Role for LAMP‐2 in endosomal cholesterol transport

Alexander Schneede; Christine K. Schmidt; Maarit Hölttä-Vuori; Jörg Heeren; Marion Willenborg; Judith Blanz; Mykola Domanskyy; Bernadette Breiden; Susanne Brodesser; Jobst Landgrebe; Konrad Sandhoff; Elina Ikonen; Paul Saftig; Eeva-Liisa Eskelinen

The mechanisms of endosomal and lysosomal cholesterol traffic are still poorly understood. We showed previously that unesterified cholesterol accumulates in the late endosomes and lysosomes of fibroblasts deficient in both lysosome associated membrane protein‐2 (LAMP‐2) and LAMP‐1, two abundant membrane proteins of late endosomes and lysosomes. In this study we show that in cells deficient in both LAMP‐1 and LAMP‐2 (LAMP−/−), low‐density lipoprotein (LDL) receptor levels and LDL uptake are increased as compared to wild‐type cells. However, there is a defect in esterification of both endogenous and LDL cholesterol. These results suggest that LAMP−/− cells have a defect in cholesterol transport to the site of esterification in the endoplasmic reticulum, likely due to defective export of cholesterol out of late endosomes or lysosomes. We also show that cholesterol accumulates in LAMP‐2 deficient liver and that overexpression of LAMP‐2 retards the lysosomal cholesterol accumulation induced by U18666A. These results point to a critical role for LAMP‐2 in endosomal/lysosomal cholesterol export. Moreover, the late endosomal/lysosomal cholesterol accumulation in LAMP−/− cells was diminished by overexpression of any of the three isoforms of LAMP‐2, but not by LAMP‐1. The LAMP‐2 luminal domain, the membrane‐proximal half in particular, was necessary and sufficient for the rescue effect. Taken together, our results suggest that LAMP‐2, its luminal domain in particular, plays a critical role in endosomal cholesterol transport and that this is distinct from the chaperone‐mediated autophagy function of LAMP‐2.


Blood | 2012

B-cell receptor triggers drug sensitivity of primary CLL cells by controlling glucosylation of ceramides

Janine Schwamb; Valeska Feldhaus; Michael Baumann; Michaela Patz; Susanne Brodesser; Reinhild Brinker; Julia Claasen; Christian P. Pallasch; Michael Hallek; Clemens-Martin Wendtner; Lukas P. Frenzel

Survival of chronic lymphocytic leukemia (CLL) cells is triggered by several stimuli, such as the B-cell receptor (BCR), CD40 ligand (CD40L), or interleukin-4 (IL-4). We identified that these stimuli regulate apoptosis resistance by modulating sphingolipid metabolism. Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of proapoptotic ceramide in BCR/IL-4/CD40L-stimulated primary CLL cells compared with untreated controls. Antiapoptotic glucosylceramide levels were significantly increased after BCR cross-linking. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via UDP-glucose ceramide glucosyltransferase (UGCG). Besides specific UGCG inhibitors, our data demonstrate that IgM-mediated UGCG expression was inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which reverted IgM-induced resistance toward apoptosis of CLL cells. Sphingolipids were recently shown to be crucial for mediation of apoptosis via mitochondria. Our data reveal ABT-737, a mitochondria-targeting drug, as interesting candidate partner for PI3Kδ and BTK inhibition, resulting in synergistic apoptosis, even under protection by the BCR. In summary, we identified the mode of action of novel kinase inhibitors CAL-101 and PCI-32765 by controlling the UGCG-mediated ceramide/glucosylceramide equilibrium as a downstream molecular switch of BCR signaling, also providing novel targeted treatment options beyond current chemotherapy-based regimens.


Molecular and Cellular Biology | 2012

Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

Jan Rynes; Colin D. Donohoe; Peter Frommolt; Susanne Brodesser; Marek Jindra; Mirka Uhlirova

ABSTRACT Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.


PLOS ONE | 2013

Dysregulated Autophagy Contributes to Podocyte Damage in Fabry’s Disease

Max C. Liebau; Fabian Braun; Katja Höpker; Claudia Weitbrecht; Valerie Bartels; Roman Ulrich Müller; Susanne Brodesser; Moin A. Saleem; Thomas Benzing; Bernhard Schermer; Markus Cybulla; Christine Kurschat

Fabry’s disease results from an inborn error of glycosphingolipid metabolism that is due to deficiency of the lysosomal hydrolase α-galactosidase A. This X-linked defect results in the accumulation of enzyme substrates with terminally α-glycosidically bound galactose, mainly the neutral glycosphingolipid Globotriaosylceramide (Gb3) in various tissues, including the kidneys. Although end-stage renal disease is one of the most common causes of death in hemizygous males with Fabry’s disease, the pathophysiology leading to proteinuria, hematuria, hypertension, and kidney failure is not well understood. Histological studies suggest that the accumulation of Gb3 in podocytes plays an important role in the pathogenesis of glomerular damage. However, due to the lack of appropriate animal or cellular models, podocyte damage in Fabry’s disease could not be directly studied yet. As murine models are insufficient, a human model is needed. Here, we developed a human podocyte model of Fabry’s disease by combining RNA interference technology with lentiviral transduction of human podocytes. Knockdown of α-galactosidase A expression resulted in diminished enzymatic activity and slowly progressive accumulation of intracellular Gb3. Interestingly, these changes were accompanied by an increase in autophagosomes as indicated by an increased abundance of LC3-II and a loss of mTOR kinase activity, a negative regulator of the autophagic machinery. These data suggest that dysregulated autophagy in α-galactosidase A-deficient podocytes may be the result of deficient mTOR kinase activity. This finding links the lysosomal enzymatic defect in Fabry’s disease to deregulated autophagy pathways and provides a promising new direction for further studies on the pathomechanism of glomerular injury in Fabry patients.


Journal of Hepatology | 2014

Liver adapts mitochondrial function to insulin resistant and diabetic states in mice

Andras Franko; Jürgen-Christoph von Kleist-Retzow; Susanne Neschen; Moya Wu; Philipp Schommers; Marlen Böse; Alexander Kunze; Ursula Hartmann; Carmen Sánchez-Lasheras; Oliver Stoehr; Michael Huntgeburth; Susanne Brodesser; Martin Irmler; Johannes Beckers; Martin Hrabé de Angelis; Mats Paulsson; Markus Schubert; Rudolf J. Wiesner

BACKGROUND & AIMS To determine if diabetic and insulin-resistant states cause mitochondrial dysfunction in liver or if there is long term adaptation of mitochondrial function to these states, mice were (i) fed with a high-fat diet to induce obesity and T2D (HFD), (ii) had a genetic defect in insulin signaling causing whole body insulin resistance, but not full blown T2D (IR/IRS-1(+/-) mice), or (iii) were analyzed after treatment with streptozocin (STZ) to induce a T1D-like state. METHODS Hepatic lipid levels were measured by thin layer chromatography. Mitochondrial respiratory chain (RC) levels and function were determined by Western blot, spectrophotometric, oxygen consumption and proton motive force analysis. Gene expression was analyzed by real-time PCR and microarray. RESULTS HFD caused insulin resistance and hepatic lipid accumulation, but RC was largely unchanged. Livers from insulin resistant IR/IRS-1(+/-) mice had normal lipid contents and a normal RC, but mitochondria were less well coupled. Livers from severely hyperglycemic and hypoinsulinemic STZ mice had massively depleted lipid levels, but RC abundance was unchanged. However, liver mitochondria isolated from these animals showed increased abundance and activity of the RC, which was better coupled. CONCLUSIONS Insulin resistance, induced either by obesity or genetic manipulation and steatosis do not cause mitochondrial dysfunction in mouse liver. Also, mitochondrial dysfunction is not a prerequisite for liver steatosis. However, severe insulin deficiency and high blood glucose levels lead to an enhanced performance and better coupling of the RC. This may represent an adaptation to fuel overload and the high energy-requirement of an unsuppressed gluconeogenesis.


Journal of Molecular Medicine | 2012

Complete failure of insulin-transmitted signaling, but not obesity-induced insulin resistance, impairs respiratory chain function in muscle

Andras Franko; J.‐C. Von Kleist‐Retzow; Marlen Böse; Carmen Sánchez-Lasheras; Susanne Brodesser; O. Krut; Wolfram S. Kunz; D. Wiedermann; M. Hoehn; O Stöhr; L. Moll; S Freude; Wilhelm Krone; Markus Schubert; Rudolf J. Wiesner

The role of mitochondrial dysfunction in the development of insulin resistance and type 2 diabetes remains controversial. In order to specifically define the relationship between insulin receptor (InsR) signaling, insulin resistance, hyperglycemia, hyperlipidemia and mitochondrial function, we analyzed mitochondrial performance of insulin-sensitive, slow-oxidative muscle in four different mouse models. In obese but normoglycemic ob/ob mice as well as in obese but diabetic mice under high-fat diet, mitochondrial performance remained unchanged even though intramyocellular diacylglycerols (DAGs), triacylglycerols (TAGs), and ceramides accumulated. In contrast, in muscle-specific InsR knockout (MIRKO) and streptozotocin (STZ)-treated hypoinsulinemic, hyperglycemic mice, levels of mitochondrial respiratory chain complexes and mitochondrial function were markedly reduced. In STZ, but not in MIRKO mice, this was caused by reduced transcription of mitochondrial genes mediated via decreased PGC-1α expression. We conclude that mitochondrial dysfunction is not causally involved in the pathogenesis of obesity-associated insulin resistance under normoglycemic conditions. However, obesity-associated type 2 diabetes and accumulation of DAGs or TAGs is not associated with impaired mitochondrial function. In contrast, chronic hypoinsulinemia and hyperglycemia as seen in STZ-treated mice as well as InsR deficiency in muscle of MIRKO mice lead to mitochondrial dysfunction. We postulate that decreased mitochondrial mass and/or performance in skeletal muscle of non-diabetic, obese or type 2 diabetic, obese patients observed in clinical studies must be explained by genetic predisposition, physical inactivity, or other still unknown factors.

Collaboration


Dive into the Susanne Brodesser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge