Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanne C. Schneider is active.

Publication


Featured researches published by Susanne C. Schneider.


Science of The Total Environment | 2013

Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns

Susanne C. Schneider; Maria Kahlert; Martyn Kelly

Eutrophication and acidification are among the major stressors on freshwater ecosystems in northern Europe and North America, but possible consequences of interactions between pH and nutrients on ecological status assessment and species richness patterns have not previously been assessed. Using data from 52 river sites throughout Norway, we investigated the combined effects of pH and nutrients on benthic algae assemblages, specifically 1) taxa-specific couplings between nutrient and acidity traits, 2) the degree of consistency between different biotic indices, separately for nutrients and acid conditions, 3) the impact of pH on nutrient indices and phosphorus on indices of acid conditions, and 4) the impact of pH and phosphorus supply on diatom and non-diatom taxon richness. We found that 1) acid-tolerant taxa are generally associated with nutrient-poor conditions, with only a few exceptions; this is probably more a consequence of habitat availability than reflecting true ecological niches; 2) correlation coefficients between nutrient indices and TP, as well as acid conditions indices and pH were barely affected when the confounding factor was removed; 3) the association of acid-tolerant taxa with nutrient-poor conditions means that the lowest possible nutrient index at a site, as indicated by benthic algae, is lower at acid than at circumneutral sites. Although this may be an artifact of the datasets from which taxa-specific indicator values were derived, it could lead to a drift in nutrient indices with recovery from acidification; 4) the response of non-diatom taxon richness follows a complex pattern with a synergistic interaction between nutrient supply and pH. In contrast, diatom richness follows a simple additive pattern; this suggests structural differences between diatoms and non-diatom benthic algae in their response to nutrient supply and pH; diatom taxon richness tended to increase with nutrient supply, while non-diatom richness decreased.


Science of The Total Environment | 2014

A comparison of ecological optima of soft-bodied benthic algae in Norwegian and Austrian rivers and consequences for river monitoring in Europe.

Eugen Rott; Susanne C. Schneider

Alpine and Nordic rivers are often considered as being among the most pristine in Europe. Nevertheless, acidification and eutrophication impact surface waters in these regions. Soft-bodied, i.e. non-diatom, benthic algae are used as indicators for eutrophication and acidification in both Norway and Austria, but consistency of indicator values has never been tested. We compared species optima with respect to pH, conductivity, total phosphorus (TP), and NO₃(-)-N concentration for 21 species, derived from geographically and temporally extensive datasets from Norway and Austria, respectively. The ranges of all four measured parameters were different between Norway and Austria, with Austria having generally higher values for all measured parameters. Optima for all 21 species with respect to pH, conductivity and NO₃(-)-N were significantly different between Norway and Austria, while 5 of the 21 taxa showed no significant differences for TP. Nevertheless, species optima for Norway and Austria were significantly correlated with each other for TP, pH and conductivity. This indicates that positions of species optima relative to each other may be stable across ecoregions, in spite of the absolute values of species optima being different. In contrast, optima with respect to NO₃(-)-N were not correlated, possibly suggesting a lesser importance of NO₃(-) in shaping benthic algal assemblages than TP and pH. We conclude that the use of eutrophication and acidification models across different ecoregions may give meaningful results, but requires regional testing of species optima.


Science of The Total Environment | 2011

Impact of calcium and TOC on biological acidification assessment in Norwegian rivers

Susanne C. Schneider

Acidification continues to be a major impact in freshwaters of northern Europe, and the biotic response to chemical recovery from acidification is often not a straightforward process. The focus on biological recovery is relevant within the context of the EU Water Framework Directive, where a biological monitoring system is needed that detects differences in fauna and flora compared to undisturbed reference conditions. In order to verify true reference sites for biological analyses, expected river pH is modeled based on Ca and TOC, and 94% of variability in pH at reference sites is explained by Ca alone, while 98% is explained by a combination of Ca and TOC. Based on 59 samples from 28 reference sites, compared to 547 samples from 285 non-reference sites, the impact of calcium and total organic carbon (TOC) on benthic algae species composition, expressed as acidification index periphyton (AIP), is analyzed. Rivers with a high Ca concentration have a naturally higher AIP, and TOC affects reference AIP only at low Ca concentrations. Four biological river types are needed for assessment of river acidification in Norway based on benthic algae: very calcium-poor, humic rivers (Ca<1 mg/l and TOC>2 mg/l); very calcium-poor, clear rivers (Ca<1 mg/l and TOC<2 mg/l); calcium-poor rivers (Ca between 1 and 4 mg/l); moderately calcium rich rivers (Ca>4 mg/l). A biological assessment system for river acidification in Norway based on benthic algae is presented, following the demands of the Water Framework Directive.


Journal of Phycology | 2015

DNA barcoding the genus Chara: molecular evidence recovers fewer taxa than the classical morphological approach

Susanne C. Schneider; Anuar Rodrigues; Therese Fosholt Moe; Andreas Ballot

Charophytes (Charales) are benthic algae with a complex morphology. They are vulnerable to ecosystem changes, such as eutrophication, and are red‐listed in many countries. Accurate identification of Chara species is critical for understanding their diversity and for documenting changes in species distribution. Species delineation is, however, complicated, because of high phenotypic plasticity. We used barcodes of the ITS2, matK and rbcL regions to test if the distribution of barcode haplotypes among individuals is consistent with species boundaries as they are currently understood. The study included freshly collected and herbarium material of 91 specimens from 10 European countries, Canada and Argentina. Results showed that herbarium specimens are useful as a source of material for genetic analyses for aquatic plants like Chara. rbcL and matK had highest sequence recoverability, but rbcL had a somewhat lower discriminatory power than ITS2 and matK. The tree resulting from the concatenated data matrix grouped the samples into six main groups contrary to a traditional morphological approach that consisted of 14 different taxa. A large unresolved group consisted of C. intermedia, C. hispida, C. horrida, C. baltica, C. polyacantha, C. rudis, C. aculeolata, and C. corfuensis. A second unresolved group consisted of C. virgata and C. strigosa. The taxa within each of the unresolved groups shared identical barcode sequences on the 977 positions of the concatenated data matrix. The morphological differences of taxa within both unresolved groups include the number and length of spine cells, stipulodes, and bract cells. We suggest that these morphological traits have less taxonomic relevance than hitherto assumed.


Science of The Total Environment | 2017

Effects of flow regime on benthic algae and macroinvertebrates - A comparison between regulated and unregulated rivers

Susanne C. Schneider; Zlatko Petrin

Natural fluctuations in flow are important for maintaining the ecological integrity of riverine ecosystems. However, the flow regime of many rivers has been modified. We assessed the impact of water chemistry, habitat and streamflow characteristics on macroinvertebrates and benthic algae, comparing 20 regulated with 20 unregulated sites. Flow regime, calculated from daily averaged discharge over the five years preceding sampling, was generally more stable at regulated sites, with higher relative discharges in winter, lower relative discharges in spring and smaller differences between upper and lower percentiles. However, no consistent differences in benthic algal or macroinvertebrate structural and functional traits occurred between regulated and unregulated sites. When regulated and unregulated sites were pooled, overall flow regime, calculated as principal components of discharge characteristics over the five years preceding sampling, affected macroinvertebrate species assemblages, but not indices used for ecosystem status assessment or functional feeding groups. This indicates that, while species identity shifted with changing flow regime, the exchanged taxa had similar feeding habits. In contrast to macroinvertebrates, overall flow regime did not affect benthic algae. Our results indicate that overall flow regime affected the species pool of macroinvertebrates from which recolonization after extreme events may occur, but not of benthic algae. When individual components of flow regime were analyzed separately, high June (i.e. three months before sampling) flow maxima were associated with low benthic algal taxon richness, presumably due to scouring. Macroinvertebrate taxon richness decreased with lower relative minimum discharges, presumably due to temporary drying of parts of the riverbed. However, recolonization after such extreme events presumably is fast. Generally, macroinvertebrate and benthic algal assemblages were more closely related to water physico-chemical than to hydrological variables. Our results suggest that macroinvertebrate and benthic algal indices commonly used for ecological status assessment are applicable also in regulated rivers.


Polish Journal of Ecology | 2014

How Do Environmental Parameters Relate to Macroinvertebrate Metrics? — Prospects for River Water Quality Assessment

Jan Błachuta; Krzysztof Szoszkiewicz; Daniel Gebler; Susanne C. Schneider

ABSTRACT: The aim of the study was to demonstrate the relationship between macroinvertebrate assemblages and aquatic vegetation interacting with chemical and geomorphological factors. The survey was carried out in the catchment of a lowland river in Poland in the year 2009. Macroinvertebrate samples were collected on 19 river sites during two campaigns (spring and autumn) and 13 macroinvertebrate metrics were calculated. Indices were selected to reflect pressures associated with organic pollutants, morphological and general degradation of rivers. Hydromorphological assessment was undertaken according to the River Habitat Survey (RHS). Water samples for chemical analysis were collected monthly during the whole year, and nine chemical parameters were analysed. Macrophyte surveys made it possible to calculate seven parameters. It was found that macroinvertebrates collected in spring and autumn showed very different patterns and that only the spring samples showed a significant relationship between macroinvertbrates and water quality, which means that spring sampling is most important for biomonitoring. Only three macroinvertebrate metrics, i.e. SIGI (German Saprobic Index), EPT (indicating the relative abundance of Ephemeroptera, Plecoptera and Trichoptera) and MBI (index used for river ecological status assessment), responded significantly to water pollution. Macrophytes and macroinvertebrates responded differently to environmental gradients and these organism groups deliver different information for monitoring.


European Journal of Phycology | 2016

Species differentiation in the genus Chara (Charophyceae): considerable phenotypic plasticity occurs within homogenous genetic groups

Susanne C. Schneider; Petra Nowak; Ulla Von Ammon; Andreas Ballot

Abstract Charophytes are benthic algae with a complex morphology and high phenotypic plasticity. This has led to ambiguities in species delineation. However, until now genetic studies on Chara have been based on samples collected from a restricted geographic range or only included a restricted number of taxa. This may have hindered a general interpretation of the results. We applied barcoding of matK, a rapidly evolving coding section of the plastid genome, in 324 Chara samples collected from 19 countries, in order to test whether the distribution of barcode haplotypes among individuals was consistent with species boundaries as they are currently understood. The phylogenetic tree grouped the 324 Chara individuals, which according to commonly used identification keys represented 29 species, into 12 well-defined groups (i.e. monophyletic morphospecies or groups of morphospecies). Considerable morphological variation occurred within genetically homogeneous groups. This included traits which are commonly used for Chara species determination, such as the length and number of spine cells, the length of stipulodes and bract cells, cortication (tylacanthous, isostichous, aulacanthous and absent cortication), as well as sex differentiation. However, there were also substantial genetic differences among morphologically similar species (e.g. C. virgata – C. globularis – C. connivens). No morphological trait consistently reflected genetic differences. This indicates that morphological traits for specific taxa may serve as diagnostic tools for species delimitation, but that they are not generally suitable for inferring genetic differentiation or phylogenetic relationships. We propose that (i) C. virgata and C. strigosa, (ii) C. liljebladii, C. horrida and C. baltica, and (iii) C. hispida, C. rudis and C. polyacantha are conspecific. Our data also indicate that C. gymnophylla should be divided into tylacanthous forms (which are closely related to C. contraria) and aulacanthous forms (which are related to C. vulgaris).


Biologia | 2014

Assessment of littoral eutrophication in Lake Ohrid by submerged macrophytes

Sonja Trajanovska; Marina Talevska; Alma Imeri; Susanne C. Schneider

Submerged macrophytes are useful indicators of nutrient pollution in the littoral of lakes. We analyzed submerged macrophytes at 30 sites in Lake Ohrid (20 in the Macedonian and 10 in the Albanian part). In total, we found 29 macrophyte species, which belong to 9 families.In order to describe and compare nutrient pollution in different parts of Lake Ohrid, and to introduce monitoring methods which are consistent with the demands of the Water Framework Directive we calculated the macrophyte index for each site. The results show that nutrient pollution generally is low in the majority of the investigated sites. There are, however, marked differences among sites, with some sites at the southern part of the lake being more polluted. There also is a marked difference in nutrient pollution between shallow and deeper water. The values of the macrophyte index in deeper waters (> 4 m) indicate that the nutrient pollution is very low, while in shallow waters (< 2 m) it is moderate or moderate-immense.


Progress in botany | 2016

The “Forgotten” Ecology Behind Ecological Status Evaluation: Re-Assessing the Roles of Aquatic Plants and Benthic Algae in Ecosystem Functioning

Susanne C. Schneider; Sabine Hilt; Jan E. Vermaat; Martyn Kelly

Aquatic plants and benthic algae have long been used as indicators for nutrient enrichment in lakes and streams. Evaluations of the performance of indices calculated from species assemblages of aquatic plants and algae are generally based on correlations with water nutrient concentrations. We argue that this is a misinterpretation, because water chemistry is both cause and effect: higher nutrient concentrations may cause enhanced plant and algal growth and change their assemblages, but plants and benthic algae also remove nutrients from the water. Additionally, biotic interactions blur water chemistry – aquatic plant relationships. We suggest that indices can be improved by relating biotic responses to quantifiable causal stressors, such as nutrient loading, instead of using water chemistry for performance evaluation of the indices. In addition, a tiered approach, i.e., the use of simpler indices for getting an overview and of sophisticated methods in doubtful cases, could avoid unnecessary costs and efforts while giving important monitoring and management information.


Botany Letters | 2018

Morphological and molecular features of a Chara vulgaris population from desert springs on the Sinai Peninsula (Springs of Moses, Egypt)

Abdullah A. Saber; Andreas Ballot; Susanne C. Schneider; Marco Cantonati

Abstract We studied morphology and phylogeny of a Chara vulgaris (Charophytes, Charales) population sampled from the thermal “Springs of Moses” (Ayun Musa, Sinai, Egypt). Morphology of freshly sampled and cultivated materials was compared in order to quantify the influence of culturing conditions on morphological features. Cultivated material was shorter and had a smaller internode diameter than the freshly collected material. The bracteoles in the freshly collected material were distinctly longer (about 4–12 times the length of an oogonium) than those in the cultured material (about 2–4 times). Moreover, oogonia were slightly longer in the cultured material. Genetic analysis of the matK gene clearly identified the sampled specimens as Chara vulgaris. However, the freshly collected material was found to differ from “typical” Chara vulgaris populations in one morphological and one life-cycle feature. The thalli were fairly delicate, and the antheridia were shed early in both freshly collected and cultured materials, while oogonia were still in place. Most of the plants prepared and observed in this study were found to bear plenty of oogonia, whilst antheridia were often missing. Antheridia were only present on the newly formed branchlets at the stem apex. The peculiar morphology and life-cycle characteristics of this C. vulgaris population may be adaptations to this highly isolated and selective desert freshwater habitat.

Collaboration


Dive into the Susanne C. Schneider's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Ballot

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tor Erik Eriksen

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Øyvind Kaste

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alma Imeri

Agricultural University of Tirana

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge