Susanne E. Keller
Food and Drug Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susanne E. Keller.
Journal of Food Protection | 2003
Lauren S. Jackson; Tina Beacham-Bowden; Susanne E. Keller; Chaitali Adhikari; Kirk T. Taylor; Stewart J. Chirtel; Robert I. Merker
Patulin is a mycotoxin produced primarily by Penicillium expansum, a mold responsible for rot in apples and other fruits. The growth of this fungus and the production of patulin are common in fruit that has been damaged. However, patulin can be detected in visibly sound fruit. The purpose of this project was to determine how apple quality, storage, and washing treatments affect patulin levels in apple cider. Patulin was not detected in cider pressed from fresh tree-picked apples (seven cultivars) but was found at levels of 40.2 to 374 microg/liter in cider pressed from four cultivars of fresh ground-harvested (dropped) apples. Patulin was not detected in cider pressed from culled tree-picked apples stored for 4 to 6 weeks at 0 to 2 degrees C but was found at levels of 0.97 to 64.0 microg/liter in cider pressed from unculled fruit stored under the same conditions. Cider from controlled-atmosphere-stored apples that were culled before pressing contained 0 to 15.1 microg of patulin per liter, while cider made from unculled fruit contained 59.9 to 120.5 microg of patulin per liter. The washing of ground-harvested apples before pressing reduced patulin levels in cider by 10 to 100%, depending on the initial patulin levels and the type of wash solution used. These results indicate that patulin is a good indicator of the quality of the apples used to manufacture cider. The avoidance of ground-harvested apples and the careful culling of apples before pressing are good methods for reducing patulin levels in cider.
Journal of Industrial Microbiology & Biotechnology | 1997
Susanne E. Keller; T M Sullivan; S Chirtel
Fumonisins are mycotoxins produced primarily by Fusarium moniliforme and Fusarium proliferatum in corn. In liquid culture, production of fumonisin B1 (FB1), the most common moiety of the family of fumonisins, can be obtained using a defined medium that is nitrogen-limited. Under nitrogen-limited conditions both growth and the production of FB1 were greatly influenced by pH and aeration. At pH above 5.0, F. proliferatum grew normally but produced little FB1 (<100 μg m−1). At pH below 5.0, there was less growth but substantially more FB1. Below a pH of 2.5, both growth and metabolism were slower with very little FB1 produced. When the optimal pH range of between 3.0 and 4.0 under well-aerated conditions was used, both growth and FB1 production were high. However, under oxygen-limited conditions, less growth occurred, glucose consumption was increased, and no FB1 was produced.
Journal of Food Protection | 2001
G. J. Fleischman; C. Bator; R. Merker; Susanne E. Keller
The effect of hot water immersion on both the reduction of Escherichia coli O157:H7 on the apple surface and internal temperatures of the apple was assessed in this study. Microbial reductions were measured experimentally, whereas internal temperatures were calculated through a mathematical analysis of experimental heat transfer data obtained from the apples. A method was developed to provide a purely surface-based inoculation of E. coli O157:H7. Rinsing produced no reduction, and treatments at 80 and 95 degrees C produced reductions of more than 5 logs in 15 s or less. The heat transfer analysis based on experimental data was used to calculate surface heat transfer coefficients and predict temperatures throughout the apple. The analysis indicated a low heat transfer rate. Although it reduces thermal degradation, a low heat transfer rate precludes thermal-based reduction of any internalized microorganisms.
Journal of Food Protection | 2012
Susanne E. Keller; Elizabeth M. Grasso; Lindsay A. Halik; Gregory J. Fleischman; Stuart J. Chirtel; Stephen F. Grove
In published data the thermal destruction of Salmonella species in peanut butter deviates from pseudo-first-order kinetics. The reasons for such deviation are unknown. This study examined both the method used to measure the thermal destruction rate and the method of growth of the microorganisms to explain variations in destruction kinetics. Growth on a solid matrix results in a different physiological state that may provide greater resistance to adverse environments. In this study, Salmonella Tennessee and Oranienburg were grown for 24 h at 37°C under aerobic conditions in broth and agar media to represent planktonic and sessile cell growth, respectively. Peanut butter was held at 25°C and tested for Salmonella levels immediately after inoculation and at various time intervals up to 2 weeks. Thermal resistance was measured at 85°C by use of a newly developed thin-layer metal sample holder. Although thermal heat transfer through the metal device resulted in longer tau values than those obtained with plastic bags (32.5 ± 0.9 versus 12.4 ± 1.9 s), the bags have a relative variability of about 15 % compared with about 3 % in the plates, allowing improved uniformity of sample treatment. The two serovars tested in the thin-layer device showed similar overall thermal resistance levels in peanut butter regardless of growth in sessile or planktonic states. However, thermal destruction curves from sessile cultures exhibited greater linearity than those obtained from planktonic cells (P = 0.0198 and 0.0047 for Salmonella Oranienburg and Salmonella Tennessee, respectively). In addition, both Salmonella serovars showed significantly higher survival in peanut butter at 25°C when originally grown on solid media (P = 0.001) with a <1-log loss over 2 weeks as opposed to a 1- to 2-log loss when grown in liquid culture. Consequently, the use of cells grown on solid media may more accurately assess the survival of Salmonella at different temperatures in a low-water-activity environment such as peanut butter.
Journal of Food Protection | 2004
Susanne E. Keller; Stuart J. Chirtel; Robert I. Merker; Kirk T. Taylor; Hsu Ling Tan; Arthur J. Miller
Apple variety, harvest, quality sorting, and storage practices were assessed to determine their impact on the microflora of unpasteurized cider. Seven apple varieties were harvested from the tree or the ground. The apples were used fresh or were stored at 0 to 4 degrees C for < or = 5 months and were pressed with or without quality selection. Cider yield, pH, Brix value, and titratable acidity were measured. Apples, postpressing apple pomace, and cider samples were analyzed for aerobic bacteria, yeasts, and molds. Aerobic bacterial plate counts (APCs) of ciders from fresh ground-picked apples (4.89 log CFU/ml) were higher than those of ciders made from fresh, tree-picked apples (3.45 log CFU/ml). Quality sorting further reduced the average APC to 2.88 log CFU/ml. Differences among all three treatment groups were significant (P < 0.0001). Apple and pomace microbial concentrations revealed harvest and postharvest treatment-dependent differences similar to those found in cider. There were significant differences in APC among apple varieties (P = 0.0001). Lower counts were associated with varieties exhibiting higher Brix values and higher titratable acidity. Differences in APC for stored and fresh apples used for cider production were not significant (P > 0.05). Yeast and mold counts revealed relationships similar to those for APCs. The relationship between initial microbial load found on incoming fruit and final cider microbial population was curvilinear, with the weakest correlations for the lowest apple microflora concentrations. The lack of linearity suggests that processing equipment contributed to cider contamination. Tree-picked quality fruit should be used for unpasteurized cider production, and careful manufacturing practices at cider plants can impact both safety and quality of the final product.
Advances in Experimental Medicine and Biology | 1996
Susanne E. Keller; Theodore M. Sullivan
Currently, fumonisin B1 is obtained primarily by using solid culture methods. Although fumonisin B1 concentrations obtained in solid culture are typically quite high, subsequent extraction and purification present problems. In addition, current methods utilize complex media which makes analysis of biosynthetic pathways and control mechanisms difficult. Liquid culture methods of production could eliminate many problems associated with production in solid culture. However, in the past, concentrations obtained in liquid culture have been relatively low. In this work, factors affecting the production of fumonisin B1 from a shake flask scale of 100 ml to a fermenter scale of 100 liters were examined. Best results were obtained by using a fed batch method that is nitrogen limited, with pH control. With this method, concentrations in excess of 1000 ppm can be obtained.
Journal of Food Protection | 2002
Susanne E. Keller; Robert I. Merker; Kirk T. Taylor; Hsu Ling Tan; Cathy D. Melvin; Stuart J. Chirtel; Arthur J. Miller
The efficacy of cleaning and sanitation in a small apple cider processing plant was evaluated by surface swab methods as well as microbiological examination of incoming raw ingredients and of the final product. Surface swabs revealed that hard-to-clean areas such as apple mills or tubing for pomace and juice transfer may continue to harbor contaminants even after cleaning and sanitation. Use of poor quality ingredients and poor sanitation led to an increase of approximately 2 logs in aerobic plate counts of the final product. Reuse of uncleaned press cloths contributed to increased microbiological counts in the finished juice. Finally, using apples inoculated with Escherichia coli K-12 in the plant resulted in an established population within the plant that was not removed during normal cleaning and sanitation. The data presented in this study suggest that current sanitary practices within a typical small cider facility are insufficient to remove potential pathogens.
Journal of Food Science | 2014
Shengqian Sun; Nathan Anderson; Susanne E. Keller
Spices, including black pepper, are a source of microbial contamination and have been linked to outbreaks of salmonellosis when added to products that undergo no further processing. Traditional thermal processing employed to reduce microbial contamination can lead to losses of heat-sensitive compounds. Thus, alternative processes such as atmospheric pressure plasma (APP) are desirable. The purpose of this research was to determine the efficacy of APP in the destruction of Salmonella inoculated on the surface of peppercorns. Secondarily, we examined the effect of storage on the subsequent inactivation of Salmonella on the surfaces of black peppercorns by APP. Black peppercorns inoculated with a cocktail of Salmonella enterica serotypes Oranienburg, Tennessee, Anatum, and Enteritidis were stored at 25 °C, 33% relative humidity (RH); 25 °C, 97% RH; and, 37 °C, 33% RH for 10 d and additionally at 25 °C, 33% RH for 1 and 30 d then treated with APP. Results showed that Salmonella populations decreased significantly (P < 0.05) with respect to the treatment time, but where not related to previous storage conditions (P > 0.05). Approximately a 4.5- to 5.5-log10 reduction in population was achieved after 60 to 80 s treatment. A combination of treatments, storage and 80 s of plasma, may achieve a total reduction on the order of 7-log10 CFU/g. These findings support the potential of APP to decontaminate Salmonella on the surfaces of black peppercorns and other dry foods and illustrate that a multiple hurdle approach may prove effective for achieving significant reductions of Salmonella in many low-moisture foods.
Journal of Food Protection | 2015
Dana R. Gradl; Lingxiang Sun; Emily L. Larkin; Stuart J. Chirtel; Susanne E. Keller
The survival of Salmonella on fresh ginger root (Zingiber officinale) during drying was examined using both a laboratory oven at 51 and 60°C with two different fan settings and a small commercially available food dehydrator. The survival of Salmonella in ground ginger stored at 25 and 37°C at 33% (low) and 97% (high) relative humidity (RH) was also examined. To inoculate ginger, a four-serovar cocktail of Salmonella was collected by harvesting agar lawn cells. For drying experiments, ginger slices (1 ± 0.5 mm thickness) were surface inoculated at a starting level of approximately 9 log CFU/g. Higher temperature (60°C) coupled with a slow fan speed (nonstringent condition) to promote a slower reduction in the water activity (aw) of the ginger resulted in a 3- to 4-log reduction in Salmonella populations in the first 4 to 6 h with an additional 2- to 3-log reduction by 24 h. Higher temperature with a higher fan speed (stringent condition) resulted in significantly less destruction of Salmonella throughout the 24-h period (P < 0.001). Survival appeared related to the rate of reduction in the aw. The aw also influenced Salmonella survival during storage of ground ginger. During storage at 97% RH, the maximum aw values were 0.85 at 25°C and 0.87 at 37°C; Salmonella was no longer detected after 25 and 5 days of storage, respectively, under these conditions. At 33% RH, the aw stabilized to approximately 0.35 at 25°C and 0.31 at 37°C. Salmonella levels remained relatively constant throughout the 365-day and 170-day storage periods for the respective temperatures. These results indicate a relationship between temperature and aw and the survival of Salmonella during both drying and storage of ginger.
Food Microbiology | 2015
Elizabeth M. Grasso; Stephen F. Grove; Lindsay A. Halik; Fletcher Arritt; Susanne E. Keller
Microbial contamination of peanut butter by Salmonella poses a significant health risk as Salmonella may remain viable throughout the product shelf life. Effective cleaning and sanitation of processing lines are essential for preventing cross-contamination. The objective of this study was to evaluate the efficacy of a cleaning and sanitation procedure involving hot oil and 60% isopropanol, ± quaternary ammonium compounds, to decontaminate pilot-scale processing equipment harboring Salmonella. Peanut butter inoculated with a cocktail of four Salmonella serovars (∼ 7 log CFU/g) was used to contaminate the equipment (∼ 75 L). The system was then emptied of peanut butter and treated with hot oil (90 °C) for 2 h followed by sanitizer for 1 h. Microbial analysis of food-contact surfaces (7 locations), peanut butter, and oil were conducted. Oil contained ∼ 3.2 log CFU/mL on both trypticase soy agar with yeast extract (TSAYE) and xylose lysine deoxycholate (XLD), indicating hot oil alone was not sufficient to inactivate Salmonella. Environmental sampling found 0.25-1.12 log CFU/cm(2) remaining on processing equipment. After the isopropanol sanitation (± quaternary ammonium compounds), no Salmonella was detected in environmental samples on XLD (<0.16 log CFU/cm(2)). These data suggest that a two-step hot oil clean and isopropanol sanitization treatment may eliminate pathogenic Salmonella from contaminated equipment.