Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanne Erdmann is active.

Publication


Featured researches published by Susanne Erdmann.


RNA Biology | 2013

Protospacer recognition motifs: mixed identities and functional diversity

Shiraz A. Shah; Susanne Erdmann; Francisco J. M. Mojica; Roger A. Garrett

Protospacer adjacent motifs (PAMs) were originally characterized for CRISPR-Cas systems that were classified on the basis of their CRISPR repeat sequences. A few short 2–5 bp sequences were identified adjacent to one end of the protospacers. Experimental and bioinformatical results linked the motif to the excision of protospacers and their insertion into CRISPR loci. Subsequently, evidence accumulated from different virus- and plasmid-targeting assays, suggesting that these motifs were also recognized during DNA interference, at least for the recently classified type I and type II CRISPR-based systems. The two processes, spacer acquisition and protospacer interference, employ different molecular mechanisms, and there is increasing evidence to suggest that the sequence motifs that are recognized, while overlapping, are unlikely to be identical. In this article, we consider the properties of PAM sequences and summarize the evidence for their dual functional roles. It is proposed to use the terms protospacer associated motif (PAM) for the conserved DNA sequence and to employ spacer acqusition motif (SAM) and target interference motif (TIM), respectively, for acquisition and interference recognition sites.


Molecular Microbiology | 2012

Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms

Susanne Erdmann; Roger A. Garrett

Central to the disparate adaptive immune systems of archaea and bacteria are clustered regularly interspaced short palindromic repeats (CRISPR). The spacer regions derive from invading genetic elements and, via RNA intermediates and associated proteins, target and cleave nucleic acids of the invader. Here we demonstrate the hyperactive uptake of hundreds of unique spacers within CRISPR loci associated with type I and IIIB immune systems of a hyperthermophilic archaeon. Infection with an environmental virus mixture resulted in the exclusive uptake of protospacers from a co‐infecting putative conjugative plasmid. Spacer uptake occurred by two distinct mechanisms in only one of two CRISPR loci subfamilies present. In two loci, insertions, often multiple, occurred adjacent to the leader while in a third locus single spacers were incorporated throughout the array. Protospacer DNAs were excised from the invading genetic element immediately after CCN motifs, on either strand, with the secondary cut apparently produced by a ruler mechanism. Over a 10‐week period, there was a gradual decrease in the number of wild‐type cells present in the culture but the virus and putative conjugative plasmid were still propagating. The results underline the complex dynamics of CRISPR‐based immune systems within a population infected with genetic elements.


Biochemical Society Transactions | 2011

CRISPR-based immune systems of the Sulfolobales: complexity and diversity

Roger A. Garrett; Shiraz A. Shah; Gisle Vestergaard; Ling Deng; Soley Gudbergsdottir; Chandra S. Kenchappa; Susanne Erdmann; Qunxin She

CRISPR (cluster of regularly interspaced palindromic repeats)/Cas and CRISPR/Cmr systems of Sulfolobus, targeting DNA and RNA respectively of invading viruses or plasmids are complex and diverse. We address their classification and functional diversity, and the wide sequence diversity of RAMP (repeat-associated mysterious protein)-motif containing proteins encoded in Cmr modules. Factors influencing maintenance of partially impaired CRISPR-based systems are discussed. The capacity for whole CRISPR transcripts to be generated despite the uptake of transcription signals within spacer sequences is considered. Targeting of protospacer regions of invading elements by Cas protein-crRNA (CRISPR RNA) complexes exhibit relatively low sequence stringency, but the integrity of protospacer-associated motifs appears to be important. Different mechanisms for circumventing or inactivating the immune systems are presented.


Molecular Microbiology | 2014

Inter‐viral conflicts that exploit host CRISPR immune systems of Sulfolobus

Susanne Erdmann; Sven Le Moine Bauer; Roger A. Garrett

Infection of Sulfolobus islandicus REY15A with mixtures of different Sulfolobus viruses, including STSV2, did not induce spacer acquisition by the host CRISPR immune system. However, coinfection with the tailed fusiform viruses SMV1 and STSV2 generated hyperactive spacer acquisition in both CRISPR loci, exclusively from STSV2, with the resultant loss of STSV2 but not SMV1. SMV1 was shown to activate adaptation while itself being resistant to CRISPR‐mediated adaptation and DNA interference. Exceptionally, a single clone S‐1 isolated from an SMV1 + STSV2‐infected culture, that carried STSV2‐specific spacers and had lost STSV2 but not SMV1, acquired spacers from SMV1. This effect was also reproducible on reinfecting wild‐type host cells with a variant SMV1 isolated from the S‐1 culture. The SMV1 variant lacked a virion protein ORF114 that was shown to bind DNA. This study also provided evidence for: (i) limits on the maximum sizes of CRISPR loci; (ii) spacer uptake strongly retarding growth of infected cultures; (iii) protospacer selection being essentially random and non‐directional, and (iv) the reversible uptake of spacers from STSV2 and SMV1. A hypothesis is presented to explain the interactive conflicts between SMV1 and the host CRISPR immune system.


Life | 2014

Viruses of Haloarchaea

Alison Luk; Timothy J. Williams; Susanne Erdmann; R. Papke; Ricardo Cavicchioli

In hypersaline environments, haloarchaea (halophilic members of the Archaea) are the dominant organisms, and the viruses that infect them, haloarchaeoviruses are at least ten times more abundant. Since their discovery in 1974, described haloarchaeoviruses include head-tailed, pleomorphic, spherical and spindle-shaped morphologies, representing Myoviridae, Siphoviridae, Podoviridae, Pleolipoviridae, Sphaerolipoviridae and Fuselloviridae families. This review overviews current knowledge of haloarchaeoviruses, providing information about classification, morphotypes, macromolecules, life cycles, genetic manipulation and gene regulation, and host-virus responses. In so doing, the review incorporates knowledge from laboratory studies of isolated viruses, field-based studies of environmental samples, and both genomic and metagenomic analyses of haloarchaeoviruses. What emerges is that some haloarchaeoviruses possess unique morphological and life cycle properties, while others share features with other viruses (e.g., bacteriophages). Their interactions with hosts influence community structure and evolution of populations that exist in hypersaline environments as diverse as seawater evaporation ponds, to hot desert or Antarctic lakes. The discoveries of their wide-ranging and important roles in the ecology and evolution of hypersaline communities serves as a strong motivator for future investigations of both laboratory-model and environmental systems.


Life | 2015

CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity

Roger A. Garrett; Shiraz A. Shah; Susanne Erdmann; Guannan Liu; Marzieh Mousaei; Carlos León‐Sobrino; Wenfang Peng; Soley Gudbergsdottir; Ling Deng; Gisle Vestergaard; Xu Peng; Qunxin She

The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed.


Biochemical Society Transactions | 2013

SMV1 virus-induced CRISPR spacer acquisition from the conjugative plasmid pMGB1 in Sulfolobus solfataricus P2

Susanne Erdmann; Shiraz A. Shah; Roger A. Garrett

Organisms of the crenarchaeal order Sulfolobales carry complex CRISPR (clustered regularly interspaced short palindromic repeats) adaptive immune systems. These systems are modular and show extensive structural and functional diversity, especially in their interference complexes. The primary targets are an exceptional range of diverse viruses, many of which propagate stably within cells and follow lytic life cycles without producing cell lysis. These properties are consistent with the difficulty of activating CRISPR spacer uptake in the laboratory, but appear to conflict with the high complexity and diversity of the CRISPR immune systems that are found among the Sulfolobales. In the present article, we re-examine the first successful induction of archaeal spacer acquisition in our laboratory that occurred exclusively for the conjugative plasmid pMGB1 in Sulfolobus solfataricus P2 that was co-infected with the virus SMV1 (Sulfolobus monocaudavirus 1). Although we reaffirm that protospacer selection is essentially a random process with respect to the pMGB1 genome, we identified single spacer sequences specific for each of CRISPR loci C, D and E that, exceptionally, occurred in many sequenced clones. Moreover, the same sequence was reproducibly acquired for a given locus in independent experiments, consistent with it being the first protospacer to be selected. There was also a small protospacer bias (1.6:1) to the antisense strand of protein genes. In addition, new experiments demonstrated that spacer acquisition in the previously inactive CRISPR locus A could be induced on freeze–thawing of the infected cells, suggesting that environmental stress can facilitate activation. Coincidentally with spacer acquisition, a mobile OrfB element was deleted from pMGB1, suggesting that interplay can occur between spacer acquisition and transposition.


Journal of Virology | 2011

Chaperone Role for Proteins p618 and p892 in the Extracellular Tail Development of Acidianus Two-Tailed Virus

Urte Scheele; Susanne Erdmann; Ernst J. Ungewickell; Catarina Felisberto-Rodrigues; Miguel Ortiz-Lombardía; Roger A. Garrett

ABSTRACT The crenarchaeal Acidianus two-tailed virus (ATV) undergoes a remarkable morphological development, extracellularly and independently of host cells, by growing long tails at each end of a spindle-shaped virus particle. Initial work suggested that an intermediate filament-like protein, p800, is involved in this process. We propose that an additional chaperone system is required, consisting of a MoxR-type AAA ATPase (p618) and a von Willebrand domain A (VWA)-containing cochaperone, p892. Both proteins are absent from the other known bicaudavirus, STSV1, which develops a single tail intracellularly. p618 exhibits ATPase activity and forms a hexameric ring complex that closely resembles the oligomeric complex of the MoxR-like protein RavA (YieN). ATV proteins p387, p653, p800, and p892 interact with p618, and with the exception of p800, all bind to DNA. A model is proposed to rationalize the interactions observed between the different protein and DNA components and to explain their possible structural and functional roles in extracellular tail development.


Nature microbiology | 2017

A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells

Susanne Erdmann; Bernhard Tschitschko; Ling Zhong; Mark J. Raftery; Ricardo Cavicchioli

The major difference between viruses and plasmids is the mechanism of transferring their genomic information between host cells. Here, we describe the archaeal plasmid pR1SE from an Antarctic species of haloarchaea that transfers via a mechanism similar to a virus. pR1SE encodes proteins that are found in regularly shaped membrane vesicles, and the vesicles enclose the plasmid DNA. The released vesicles are capable of infecting a plasmid-free strain, which then gains the ability to produce plasmid-containing vesicles. pR1SE can integrate and replicate as part of the host genome, resolve out with fragments of host DNA incorporated or portions of the plasmid left behind, form vesicles and transfer to new hosts. The pR1SE mechanism of transfer of DNA could represent the predecessor of a strategy used by viruses to pass on their genomic DNA and fulfil roles in gene exchange, supporting a strong evolutionary connection between plasmids and viruses.An archaeal plasmid that can be transported in membrane vesicles, similar to a virus, and encodes proteins that can insert into host membranes and membrane vesicles, provides insights into the evolutionary link between plasmids and viruses.


Virology | 2011

AAA ATPase p529 of Acidianus two-tailed virus ATV and host receptor recognition

Susanne Erdmann; Urte Scheele; Roger A. Garrett

The two structural domains of p529, a predicted AAA ATPase of Acidianus two-tailed virus (ATV), were expressed and purified. The N-terminal domain was demonstrated by loss-of-function mutations to carry ATPase activity with a temperature optimum of 60°C. This domain also showed DNA binding activity that was stronger for the whole protein and was weakened in the presence of ATP. The C-terminal domain exhibits Mg(2+)-dependent endonuclease activity that was eliminated by site-directed mutagenesis at a conserved catalytic PD…D/ExK motif. p529 pull-down experiments with cell extracts of Sulfolobus solfataricus demonstrated a specific interaction with Sso1273, corresponding to OppA(Ss), an N-linked glycoprotein that specifically binds oligopeptides. The sso1273 gene lies in an operon encoding an oligopeptide/dipeptide ABC transporter system. It is proposed that p529 is involved in ATV-host cell receptor recognition and possibly the endonuclease activity is required for cleavage of the circular viral DNA prior to cell entry.

Collaboration


Dive into the Susanne Erdmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiraz A. Shah

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Ricardo Cavicchioli

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Ling Deng

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Qunxin She

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Urte Scheele

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Bernhard Tschitschko

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge