Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanne Gessert is active.

Publication


Featured researches published by Susanne Gessert.


Circulation Research | 2010

The Multiple Phases and Faces of Wnt Signaling During Cardiac Differentiation and Development

Susanne Gessert; Michael Kühl

Understanding heart development on a molecular level is a prerequisite for uncovering the causes of congenital heart diseases. Therapeutic approaches that try to enhance cardiac regeneration or that involve the differentiation of resident cardiac progenitor cells or patient-specific induced pluripotent stem cells will also benefit tremendously from this knowledge. Wnt proteins have been shown to play multiple roles during cardiac differentiation and development. They are extracellular growth factors that activate different intracellular signaling branches. Here, we summarize our current understanding of how these factors affect different aspects of cardiogenesis, starting from early specification of cardiac progenitors and continuing on to later developmental steps, such as morphogenetic processes, valve formation, and establishment of the conduction system.


Developmental Biology | 2009

Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis.

Susanne Gessert; Michael Kühl

Retrospective clonal analysis in mice suggested that the vertebrate heart develops from two sources of cells called first and second lineages, respectively. Cells of the first lineage enter the linear heart tube and initiate terminal differentiation earlier than cells of the second lineage. It is thought that both heart lineages arise from a common progenitor cell population prior to the cardiac crescent stage (E7.5 of mouse development). The timing of segregation of different lineages as well as the molecular mechanisms underlying this process is not yet known. Furthermore, gene expression data for those lineages are very limited. Here we provide the first comparative study of cardiac marker gene expression during Xenopus laevis embryogenesis complemented by single cell RT-PCR analysis. In addition we provide fate mapping data of cardiac progenitor cells at different stages of development. Our analysis indicates an early segregation of cardiac lineages and a fairly complex heterogeneity of gene expression in the cardiac progenitor cells. Furthermore, this study sets a reference for all further studies analyzing cardiac development in X. laevis.


Developmental Biology | 2010

FMR1/FXR1 and the miRNA pathway are required for eye and neural crest development.

Susanne Gessert; Verena Bugner; Aleksandra Tecza; Maximilian Pinker; Michael Kühl

FMR1 and FXR1 are RNA binding proteins interacting with the miRNA-induced silencing complex, RISC. Here we describe for the first time the function of these proteins during eye and neural crest (NC) development in Xenopus laevis. A loss of FMR1 or FXR1 results in abnormal eye development as well as defects in cranial cartilage derived from cranial NC cells. We further investigated the possible mechanism of these phenotypes by showing that a depletion of Dicer, an important enzyme for generating all mature miRNAs, in the anterior neural tissue also leads to eye and cranial cartilage defects. Furthermore, we examined the function of 12 miRNAs during anterior neural development. We show a specific requirement of six selected miRNAs during eye and cranial cartilage development. Mir-130a, -219, and -23b are involved in eye formation only whereas loss of miR-200b, miR-96 and miR-196a results in strong defects during eye as well as cranial cartilage development. Our results suggest an essential role for FMR1 and FXR1 for eye and NC development in X.laevis likely through an interaction with the miRNA pathway.


Developmental Dynamics | 2007

FoxN3 is required for craniofacial and eye development of Xenopus laevis

Maximilian Schuff; Antje Rössner; Stephan A. Wacker; Cornelia Donow; Susanne Gessert; Walter Knöchel

A functional knockdown of FoxN3, a member of subclass N of fork head/winged helix transcription factors in Xenopus laevis, leads to an abnormal formation of the jaw cartilage, absence or malformation of distinct cranial nerves, and reduced size of the eye. While the eye phenotype is due to an increased rate of apoptosis, the cellular basis of the jaw phenotype is more complex. The upper and lower jaw cartilages are derivatives of a subset of cranial neural crest cells, which migrate into the first pharyngeal arch. Histological analysis of FoxN3‐depleted embryos reveals severe deformation and false positioning of infrarostral, Meckels, and palatoquadrate cartilages, structural elements derived from the first pharyngeal arch, and of the ceratohyale, which derives from the second pharyngeal arch. The derivatives of the third and fourth pharyngeal arches are less affected. FoxN3 is not required for early neural crest migration. Defects in jaw formation rather arise by failure of differentiation than by positional effects of crest migration. By GST‐pulldown analysis, we have identified two different members of histone deacetylase complexes (HDAC), xSin3 and xRPD3, as putative interaction partners of FoxN3, suggesting that FoxN3 regulates craniofacial and eye development by recruiting HDAC. Developmental Dynamics 236:226–239, 2007.


Biochemical Journal | 2007

Phosphorylation of CK1δ: identification of Ser370 as the major phosphorylation site targeted by PKA in vitro and in vivo

Georgios Giamas; Heidrun Hirner; Levani Shoshiashvili; Arnhild Grothey; Susanne Gessert; Michael Kühl; Doris Henne-Bruns; Constantinos E. Vorgias; Uwe Knippschild

The involvement of CK1 (casein kinase 1) delta in the regulation of multiple cellular processes implies a tight regulation of its activity on many different levels. At the protein level, reversible phosphorylation plays an important role in modulating the activity of CK1delta. In the present study, we show that PKA (cAMP-dependent protein kinase), Akt (protein kinase B), CLK2 (CDC-like kinase 2) and PKC (protein kinase C) alpha all phosphorylate CK1delta. PKA was identified as the major cellular CK1deltaCK (CK1delta C-terminal-targeted protein kinase) for the phosphorylation of CK1delta in vitro and in vivo. This was implied by the following evidence: PKA was detectable in the CK1deltaCK peak fraction of fractionated MiaPaCa-2 cell extracts, PKA shared nearly identical kinetic properties with those of CK1deltaCK, and both PKA and CK1deltaCK phosphorylated CK1delta at Ser370 in vitro. Furthermore, phosphorylation of CK1delta by PKA decreased substrate phosphorylation of CK1delta in vitro. Mutation of Ser370 to alanine increased the phosphorylation affinity of CK1delta for beta-casein and the GST (gluthatione S-transferase)-p53 1-64 fusion protein in vitro and enhanced the formation of an ectopic dorsal axis during Xenopus laevis development. Anchoring of PKA and CK1delta to centrosomes was mediated by AKAP (A-kinase-anchoring protein) 450. Interestingly, pre-incubation of MiaPaCa-2 cells with the synthetic peptide St-Ht31, which prevents binding between AKAP450 and the regulatory subunit RII of PKA, resulted in a 6-fold increase in the activity of CK1delta. In summary, we conclude that PKA phosphorylates CK1delta, predominantly at Ser370 in vitro and in vivo, and that site-specific phosphorylation of CK1delta by PKA plays an important role in modulating CK1delta-dependent processes.


Developmental Biology | 2008

DM-GRASP/ALCAM/CD166 is required for cardiac morphogenesis and maintenance of cardiac identity in first heart field derived cells.

Susanne Gessert; Daniel Maurus; Thomas Brade; Paul Walther; Petra Pandur; Michael Kühl

Vertebrate heart development requires specification of cardiac precursor cells, migration of cardiac progenitors as well as coordinated cell movements during looping and septation. DM-GRASP/ALCAM/CD166 is a member of the neuronal immunoglobulin domain superfamily of cell adhesion molecules and was recently suggested to be a target gene of non-canonical Wnt signalling. Loss of DM-GRASP function did not affect specification of cardiac progenitor cells. Later during development, expression of cardiac marker genes in the first heart field of Xenopus laevis such as Tbx20 and TnIc was reduced, whereas expression of the second heart field marker genes Isl-1 and BMP-4 was unaffected. Furthermore, loss of DM-GRASP function resulted in defective cell adhesion and cardiac morphogenesis. Additionally, expression of DM-GRASP can rescue the phenotype that results from the loss of non-canonical Wnt11-R signalling suggesting that DM-GRASP and non-canonical Wnt signalling are functionally coupled during cardiac development.


Development | 2011

Peter Pan functions independently of its role in ribosome biogenesis during early eye and craniofacial cartilage development in Xenopus laevis.

Verena Bugner; Aleksandra Tecza; Susanne Gessert; Michael Kühl

The Xenopus oocyte possesses a large maternal store of ribosomes, thereby uncoupling early development from the de novo ribosome biosynthesis required for cell growth. Brix domain-containing proteins, such as Peter Pan (PPan), are essential for eukaryotic ribosome biogenesis. In this study, we demonstrate that PPan is expressed maternally as well as in the eye and cranial neural crest cells (NCCs) during early Xenopus laevis development. Depletion of PPan and interference with rRNA processing using antisense morpholino oligonucleotides resulted in eye and cranial cartilage malformations. Loss of PPan, but not interference with rRNA processing, led to an early downregulation of specific marker genes of the eye, including Rx1 and Pax6, and of NCCs, such as Twist, Slug and FoxD3. We found that PPan protein is localized in the nucleoli and mitochondria and that loss of PPan results in increased apoptosis. These findings indicate a novel function of PPan that is independent of its role in ribosome biogenesis.


Biology of the Cell | 2008

Repulsive guidance molecule A (RGM A) and its receptor neogenin during neural and neural crest cell development of Xenopus laevis.

Susanne Gessert; Daniel Maurus; Michael Kühl

Background information. RGM A (repulsive guidance molecule A) is a GPI (glycosylphosphatidylinositol)‐anchored glycoprotein which has repulsive properties on axons due to the interaction with its receptor neogenin. In addition, RGM A has been demonstrated to function as a BMP (bone morphogenetic protein) co‐receptor.


Developmental Dynamics | 2011

The spatio-temporal expression of ProSAP/shank family members and their interaction partner LAPSER1 during Xenopus laevis development

Susanne Gessert; Michael J. Schmeisser; Si Tao; Tobias M. Boeckers; Michael Kühl

Members of the ProSAP/Shank family are important scaffolding proteins of the postsynaptic density (PSD). We investigated for the first time the expression of the three family members named Shank1, ProSAP1/Shank2, and ProSAP2/Shank3 during Xenopus laevis development. Shank1 is expressed in the neural tube, the retina, and the cranial ganglions. In contrast, ProSAP1/Shank2 transcripts could be visualized in the otic vesicle, the pronephros, the liver, the neural tube, and the retina. ProSAP2/Shank3 could be detected in the cardiovascular network, the neural tube, the pronephros, and the retina. Furthermore, we showed that LAPSER1 interacts with all three ProSAP/Shank family members in Xenopus embryos and co‐localizes with ProSAP/Shank in a cell‐based assay. In Xenopus, LAPSER1 is expressed in somites, brain, proctodeum, pronephros, and in some cranial ganglions. Thus, we suggest that members of the ProSAP/Shank family and LAPSER1 not only play a role in PSD formation and plasticity, but also during embryonic development. Developmental Dynamics 240:1528–1536, 2011.


Development Genes and Evolution | 2011

Expression analysis of epb41l4a during Xenopus laevis embryogenesis

Yanchun Guo; Kathleen S. Christine; Frank L. Conlon; Susanne Gessert; Michael Kühl

Epbl41l4a (erythrocyte protein band 4.1-like 4a, also named Nbl4) is a member of the band 4.1/Nbl4 (novel band 4.1-like protein 4) group of the FERM (4.1, ezrin, radixin, moesin) protein superfamily. Proteins encoded by this gene family are involved in many cellular processes such as organization of epithelial cells and signal transduction. On a molecular level, band 4.1/Nbl4 proteins have been shown to link membrane-associated proteins and lipids to the actin cytoskeleton. Epbl41l4a has also recently been identified as a target gene of the Wnt/β-catenin pathway. Here, we describe for the first time the spatio-temporal expression of epbl41l4a using Xenopus laevis as a model system. We observed a strong and specific expression of epb41l4a in the developing somites, in particular during segmentation as well as in the nasal and cranial placodes, pronephros, and neural tube. Thus, epbl41l4a is expressed in tissues undergoing morphogenetic movements, suggesting a functional role of epbl41l4a during these processes.

Collaboration


Dive into the Susanne Gessert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge