Susanne Höing
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susanne Höing.
Cell Stem Cell | 2013
Peter Reinhardt; Benjamin Schmid; Lena F. Burbulla; David C. Schöndorf; Lydia Wagner; Michael Glatza; Susanne Höing; Gunnar Hargus; Susanna A. Heck; Ashutosh Dhingra; Guangming Wu; Stephan A. Müller; Kathrin Brockmann; Torsten Kluba; Martina Maisel; Rejko Krüger; Daniela Berg; Yaroslav Tsytsyura; Cora S. Thiel; Olympia-Ekaterini Psathaki; Jürgen Klingauf; Tanja Kuhlmann; Marlene Klewin; Heiko Müller; Thomas Gasser; Hans R. Schöler; Jared Sterneckert
The LRRK2 mutation G2019S is the most common genetic cause of Parkinsons disease (PD). To better understand the link between mutant LRRK2 and PD pathology, we derived induced pluripotent stem cells from PD patients harboring LRRK2 G2019S and then specifically corrected the mutant LRRK2 allele. We demonstrate that gene correction resulted in phenotypic rescue in differentiated neurons and uncovered expression changes associated with LRRK2 G2019S. We found that LRRK2 G2019S induced dysregulation of CPNE8, MAP7, UHRF2, ANXA1, and CADPS2. Knockdown experiments demonstrated that four of these genes contribute to dopaminergic neurodegeneration. LRRK2 G2019S induced increased extracellular-signal-regulated kinase 1/2 (ERK) phosphorylation. Transcriptional dysregulation of CADPS2, CPNE8, and UHRF2 was dependent on ERK activity. We show that multiple PD-associated phenotypes were ameliorated by inhibition of ERK. Therefore, our results provide mechanistic insight into the pathogenesis induced by mutant LRRK2 and pointers for the development of potential new therapeutics.
PLOS ONE | 2013
Peter Reinhardt; Michael Glatza; Kathrin Hemmer; Yaroslav Tsytsyura; Cora S. Thiel; Susanne Höing; Sören Moritz; Juan A. Parga; Lydia Wagner; Jan M. Bruder; Guangming Wu; Benjamin Schmid; Albrecht Röpke; Jürgen Klingauf; Jens Christian Schwamborn; Thomas Gasser; Hans R. Schöler; Jared Sterneckert
Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development.
Stem Cells | 2012
Jared Sterneckert; Susanne Höing; Hans R. Schöler
Through cellular differentiation, a single cell eventually gives rise to all the various lineages of an organism. This process has traditionally been viewed as irreversible. However, nuclear transfer experiments have demonstrated that differentiated cells can be reprogrammed to form even an entire organism. Yamanaka electrified the world with the discovery that expression of only four transcription factors was sufficient to induce pluripotency in differentiated somatic cells of mammals. Expansion of this work has shown that expression of the master pluripotency gene Oct4 is sufficient to induce pluripotency in neural stem cells. In contrast to somatic cells, germline cells express Oct4 and can acquire pluripotency without the addition of exogenous transcription factors. More recently, it has been possible to also induce an alternative cell fate directly by the transdifferentiation of cells mediated by the introduction of specific transcription factors, including Oct4. Therefore, we suggest that Oct4 is the gatekeeper into a reprogramming expressway that can be directed by altering the experimental conditions. STEM CELLS 2012;30:15–21
Developmental Cell | 2011
Stefanie Ohlig; Pershang Farshi; Ute Pickhinke; Johannes van den Boom; Susanne Höing; Stanislav Jakuschev; Daniel Hoffmann; Rita Dreier; Hans R. Schöler; Tabea Dierker; Christian Bordych; Kay Grobe
All Hedgehog (Hh) proteins are released from producing cells despite being synthesized as N- and C-terminally lipidated, membrane-tethered molecules. Thus, a cellular mechanism is needed for Hh solubilization. We previously suggested that a disintegrin and metalloprotease (ADAM)-mediated shedding of Sonic hedgehog (ShhNp) from its lipidated N and C termini results in protein solubilization. This finding, however, seemed at odds with the established role of N-terminal palmitoylation for ShhNp signaling activity. We now resolve this paradox by showing that N-palmitoylation of ShhNp N-terminal peptides is required for their proteolytic removal during solubilization. These peptides otherwise block ShhNp zinc coordination sites required for ShhNp binding to its receptor Patched (Ptc), explaining the essential yet indirect role of N-palmitoylation for ShhNp function. We suggest a functional model in which membrane-tethered multimeric ShhNp is at least partially autoinhibited in trans but is processed into fully active, soluble multimers upon palmitoylation-dependent cleavage of inhibitory N-terminal peptides.
Cell Stem Cell | 2012
Susanne Höing; York Rudhard; Peter Reinhardt; Michael Glatza; Martin Stehling; Guangming Wu; Christiane Peiker; Alexander Böcker; Juan A. Parga; Eva C. Bunk; Jens Christian Schwamborn; Mark Slack; Jared Sterneckert; Hans R. Schöler
Stem cells, through their ability to both self-renew and differentiate, can produce a virtually limitless supply of specialized cells that behave comparably to primary cells. We took advantage of this property to develop an assay for small-molecule-based neuroprotection using stem-cell-derived motor neurons and astrocytes, together with activated microglia as a stress paradigm. Here, we report on the discovery of hit compounds from a screen of more than 10,000 small molecules. These compounds act through diverse pathways, including the inhibition of nitric oxide production by microglia, activation of the Nrf2 pathway in microglia and astrocytes, and direct protection of neurons from nitric-oxide-induced degeneration. We confirm the activity of these compounds using human neurons. Because microglial cells are activated in many neurological disorders, our hit compounds could be ideal starting points for the development of new drugs to treat various neurodegenerative and neurological diseases.
Chemistry & Biology | 2013
Andrey P. Antonchick; Sara López-Tosco; Juan A. Parga; Sonja Sievers; Markus Schürmann; Hans Preut; Susanne Höing; Hans R. Schöler; Jared Sterneckert; Daniel Rauh; Herbert Waldmann
Natural products endowed with neuromodulatory activity and their underlying structural scaffolds may inspire the synthesis of novel neurotrophic compound classes. The spirocyclic secoyohimbane alkaloid rhynchophylline is the major component of the extracts of Uncaria species used in Chinese traditional medicine for treatment of disorders of the central nervous system. Based on the structure of rhynchophylline, a highly enantioselective and efficient organocatalyzed synthesis method was developed that gives access to the tetracyclic secoyohimbane scaffold, embodying a quaternary and three tertiary stereogenic centers in a one-pot multistep reaction sequence. Investigation of a collection of the secoyohimbanes in primary rat hippocampal neurons and embryonal stem cell-derived motor neurons led to discovery of compounds that promote neurite outgrowth and influence the complexity of neuronal network formation.
Journal of Biological Chemistry | 2011
Pershang Farshi; Stefanie Ohlig; Ute Pickhinke; Susanne Höing; Katja Jochmann; Roger Lawrence; Rita Dreier; Tabea Dierker; Kay Grobe
The fly morphogen Hedgehog (Hh) and its mammalian orthologs, Sonic, Indian, and Desert hedgehog, are secreted signaling molecules that mediate tissue patterning during embryogenesis and function in tissue homeostasis and regeneration in the adult. The function of all Hh family members is regulated at the levels of morphogen multimerization on the surface of producing cells, multimer release, multimer diffusion to target cells, and signal reception. These mechanisms are all known to depend on interactions of positively charged Hh amino acids (the Cardin-Weintraub (CW) motif) with negatively charged heparan sulfate (HS) glycosaminoglycan chains. However, a precise mechanistic understanding of these interactions is still lacking. In this work, we characterized ionic HS interactions of multimeric Sonic hedgehog (called ShhNp) as well as mutant forms lacking one or more CW residues. We found that deletion of all five CW residues as well as site-directed mutagenesis of CW residues Lys33, Arg35, and Lys39 (mouse nomenclature) abolished HS binding. In contrast, CW residues Arg34 and Lys38 did not contribute to HS binding. Analysis and validation of Shh crystal lattice contacts provided an explanation for this finding. We demonstrate that CW residues Arg34 and Lys38 make contact with an acidic groove on the adjacent molecule in the multimer, suggesting a new function of these residues in ShhNp multimerization rather than HS binding. Therefore, the recombinant monomeric morphogen (called ShhN) differs in CW-dependent HS binding and biological activity from physiologically relevant ShhNp multimers, providing new explanations for functional differences observed between ShhN and ShhNp.
PLOS ONE | 2012
Gerrit Fischedick; Diana C. Klein; Guangming Wu; Daniel Esch; Susanne Höing; Dong Wook Han; Peter Reinhardt; Kerstin Hergarten; Natalia Tapia; Hans R. Schöler; Jared Sterneckert
Expression of the four transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is sufficient to reprogram somatic cells into induced pluripotent stem (iPSCs). However, this process is slow and inefficient compared with the fusion of somatic cells with embryonic stem cells (ESCs), indicating that ESCs express additional factors that can enhance the efficiency of reprogramming. We had previously developed a method to detect and isolate early neural induction intermediates during the differentiation of mouse ESCs. Using the gene expression profiles of these intermediates, we identified 23 ESC-specific transcripts and tested each for the ability to enhance iPSC formation. Of the tested factors, zinc finger protein 296 (Zfp296) led to the largest increase in mouse iPSC formation. We confirmed that Zfp296 was specifically expressed in pluripotent stem cells and germ cells. Zfp296 in combination with OSKM induced iPSC formation earlier and more efficiently than OSKM alone. Through mouse chimera and teratoma formation, we demonstrated that the resultant iPSCs were pluripotent. We showed that Zfp296 activates transcription of the Oct4 gene via the germ cell–specific conserved region 4 (CR4), and when overexpressed in mouse ESCs leads to upregulation of Nanog expression and downregulation of the expression of differentiation markers, including Sox17, Eomes, and T, which is consistent with the observation that Zfp296 enhances the efficiency of reprogramming. In contrast, knockdown of Zfp296 in ESCs leads to the expression of differentiation markers. Finally, we demonstrated that expression of Zfp296 in ESCs inhibits, but does not block, differentiation into neural cells.
Genes & Development | 2013
Akiko Nakayama; Masanori Nakayama; Christopher J. Turner; Susanne Höing; John J. Lepore; Ralf H. Adams
B-class ephrins, ligands for EphB receptor tyrosine kinases, are critical regulators of growth and patterning processes in many organs and species. In the endothelium of the developing vasculature, ephrin-B2 controls endothelial sprouting and proliferation, which has been linked to vascular endothelial growth factor (VEGF) receptor endocytosis and signaling. Ephrin-B2 also has essential roles in supporting mural cells (namely, pericytes and vascular smooth muscle cells [VSMCs]), but the underlying mechanism is not understood. Here, we show that ephrin-B2 controls platelet-derived growth factor receptor β (PDGFRβ) distribution in the VSMC plasma membrane, endocytosis, and signaling in a fashion that is highly distinct from its role in the endothelium. Absence of ephrin-B2 in cultured VSMCs led to the redistribution of PDGFRβ from caveolin-positive to clathrin-associated membrane fractions, enhanced PDGF-B-induced PDGFRβ internalization, and augmented downstream mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK) activation but impaired Tiam1-Rac1 signaling and proliferation. Accordingly, mutant mice lacking ephrin-B2 expression in vascular smooth muscle developed vessel wall defects and aortic aneurysms, which were associated with impaired Tiam1 expression and excessive activation of MAP kinase and JNK. Our results establish that ephrin-B2 is an important regulator of PDGFRβ endocytosis and thereby acts as a molecular switch controlling the downstream signaling activity of this receptor in mural cells.
Cell Reports | 2016
Damir Jacob Illich; Miao Zhang; Andrei Ursu; Rodrigo Osorno; Kee-Pyo Kim; Juyong Yoon; Marcos J. Araúzo-Bravo; Guangming Wu; Daniel Esch; Davood Sabour; Douglas Colby; Kathrin S. Grassme; Jiayu Chen; Boris Greber; Susanne Höing; Wiebke Herzog; Slava Ziegler; Ian Chambers; Shaorong Gao; Herbert Waldmann; Hans R. Schöler
Summary It has previously been reported that mouse epiblast stem cell (EpiSC) lines comprise heterogeneous cell populations that are functionally equivalent to cells of either early- or late-stage postimplantation development. So far, the establishment of the embryonic stem cell (ESC) pluripotency gene regulatory network through the widely known chemical inhibition of MEK and GSK3beta has been impractical in late-stage EpiSCs. Here, we show that chemical inhibition of casein kinase 1alpha (CK1alpha) induces the conversion of recalcitrant late-stage EpiSCs into ESC pluripotency. CK1alpha inhibition directly results in the simultaneous activation of the WNT signaling pathway, together with inhibition of the TGFbeta/SMAD2 signaling pathway, mediating the rewiring of the gene regulatory network in favor of an ESC-like state. Our findings uncover a molecular mechanism that links CK1alpha to ESC pluripotency through the direct modulation of WNT and TGFbeta signaling.