Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanne K. Pedersen is active.

Publication


Featured researches published by Susanne K. Pedersen.


BMC Cancer | 2014

A panel of genes methylated with high frequency in colorectal cancer

Susan Margaret Mitchell; Jason P. Ross; Horace R. Drew; Thu Ho; Glenn Brown; Neil F. W. Saunders; Konsta Duesing; Michael Buckley; Robert Dunne; Iain Beetson; Keith N. Rand; Aidan McEvoy; Melissa K. Thomas; Rohan Baker; David Wattchow; Graeme P. Young; Trevor Lockett; Susanne K. Pedersen; Peter L. Molloy

BackgroundThe development of colorectal cancer (CRC) is accompanied by extensive epigenetic changes, including frequent regional hypermethylation particularly of gene promoter regions. Specific genes, including SEPT9, VIM1 and TMEFF2 become methylated in a high fraction of cancers and diagnostic assays for detection of cancer-derived methylated DNA sequences in blood and/or fecal samples are being developed. There is considerable potential for the development of new DNA methylation biomarkers or panels to improve the sensitivity and specificity of current cancer detection tests.MethodsCombined epigenomic methods – activation of gene expression in CRC cell lines following DNA demethylating treatment, and two novel methods of genome-wide methylation assessment – were used to identify candidate genes methylated in a high fraction of CRCs. Multiplexed amplicon sequencing of PCR products from bisulfite-treated DNA of matched CRC and non-neoplastic tissue as well as healthy donor peripheral blood was performed using Roche 454 sequencing. Levels of DNA methylation in colorectal tissues and blood were determined by quantitative methylation specific PCR (qMSP).ResultsCombined analyses identified 42 candidate genes for evaluation as DNA methylation biomarkers. DNA methylation profiles of 24 of these genes were characterised by multiplexed bisulfite-sequencing in ten matched tumor/normal tissue samples; differential methylation in CRC was confirmed for 23 of these genes. qMSP assays were developed for 32 genes, including 15 of the sequenced genes, and used to quantify methylation in tumor, adenoma and non-neoplastic colorectal tissue and from healthy donor peripheral blood. 24 of the 32 genes were methylated in >50% of neoplastic samples, including 11 genes that were methylated in 80% or more CRCs and a similar fraction of adenomas.ConclusionsThis study has characterised a panel of 23 genes that show elevated DNA methylation in >50% of CRC tissue relative to non-neoplastic tissue. Six of these genes (SOX21, SLC6A15, NPY, GRASP, ST8SIA1 and ZSCAN18) show very low methylation in non-neoplastic colorectal tissue and are candidate biomarkers for stool-based assays, while 11 genes (BCAT1, COL4A2, DLX5, FGF5, FOXF1, FOXI2, GRASP, IKZF1, IRF4, SDC2 and SOX21) have very low methylation in peripheral blood DNA and are suitable for further evaluation as blood-based diagnostic markers.


BMC Cancer | 2015

Evaluation of an assay for methylated BCAT1 and IKZF1 in plasma for detection of colorectal neoplasia

Susanne K. Pedersen; Erin L. Symonds; Rohan Baker; David H. Murray; Aidan McEvoy; Sascha C. van Doorn; M.W. Mundt; Stephen R. Cole; Geetha Gopalsamy; Dileep Mangira; Evelien Dekker; Graeme P. Young

BackgroundSpecific genes, such as BCAT1 and IKZF1, are methylated with high frequency in colorectal cancer (CRC) tissue compared to normal colon tissue specimens. Such DNA may leak into blood and be present as cell-free circulating DNA. We have evaluated the accuracy of a novel blood test for these two markers across the spectrum of benign and neoplastic conditions encountered in the colon and rectum.MethodsCirculating DNA was extracted from plasma obtained from volunteers scheduled for colonoscopy for any reason, or for colonic surgery, at Australian and Dutch hospitals. The extracted DNA was bisulphite converted and analysed by methylation specific real-time quantitative PCR (qPCR). A specimen was deemed positive if one or more qPCR replicates were positive for either methylated BCAT1 or IKZF1 DNA. Sensitivity and specificity for CRC were estimated as the primary outcome measures.ResultsPlasma samples were collected from 2105 enrolled volunteers (mean age 62 years, 54 % male), including 26 additional samples taken after surgical removal of cancers. The two-marker blood test was run successfully on 2127 samples. The test identified 85 of 129 CRC cases (sensitivity of 66 %, 95 % CI: 57–74). For CRC stages I-IV, respective positivity rates were 38 % (95 % CI: 21–58), 69 % (95 % CI: 53–82), 73 % (95 % CI: 56–85) and 94 % (95 % CI: 70–100). A positive trend was observed between positivity rate and degree of invasiveness. The colonic location of cancer did not influence assay positivity rates. Gender, age, smoking and family history were not significant predictors of marker positivity. Twelve methylation-positive cancer cases with paired pre- and post-surgery plasma showed reduction in methylation signal after surgery, with complete disappearance of signal in 10 subjects. Sensitivity for advanced adenoma (n = 338) was 6 % (95 % CI: 4–9). Specificity was 94 % (95 % CI: 92–95) in all 838 non-neoplastic pathology cases and 95 % (95 % CI: 92–97) in those with no colonic pathology detected (n = 450).ConclusionsThe sensitivity for cancer of this two-marker blood test justifies prospective evaluation in a true screening population relative to a proven screening test. Given the high rate of marker disappearance after cancer resection, this blood test might also be useful to monitor tumour recurrence.Trial registrationACTRN12611000318987.


PLOS ONE | 2015

A Two-Gene Blood Test for Methylated DNA Sensitive for Colorectal Cancer

Susanne K. Pedersen; Rohan Baker; Aidan McEvoy; David H. Murray; Melissa K. Thomas; Peter L. Molloy; Sue Mitchell; Trevor Lockett; Graeme P. Young

Background Specific genes are methylated with high frequency in colorectal neoplasia, and may leak into blood. Detection of multiple methylated DNA biomarkers in blood may improve assay sensitivity for colorectal cancer (CRC) relative to a single marker. We undertook a case-control study evaluating the presence of two methylation DNA markers, BCAT1 and IKZF1, in circulation to determine if they were complementary for detection of CRC. Methods Methylation-specific PCR assays were developed to measure the level of methylated BCAT1 and IKZF1 in DNA extracted from plasma obtained from colonoscopy-confirmed 144 healthy controls and 74 CRC cases. Results DNA yields ranged from 2 to 730 ng/mL plasma (mean 18.6ng/mL; 95% CI 11-26 ng/mL) and did not correlate with gender, age or CRC status. Methylated BCAT1 and IKZF1 DNA were detected in respectively 48 (65%) and 50 (68%) of the 74 cancers. In contrast, only 5 (4%) and 7 (5%) controls were positive for BCAT1 and IKZF1 DNA methylation, respectively. A two-gene classifier model (“either or” rule) improved segregation of CRC from controls, with 57 of 74 cancers (77%) compared to only 11 of 144 (7.6%) controls being positive for BCAT1 and/or IKZF1 DNA methylation. Increasing levels of methylated DNA were observed as CRC stage progressed. Conclusions Detection of methylated BCAT1 and/or IKZF1 DNA in plasma may have clinical application as a novel blood test for CRC. Combining the results from the two methylation-specific PCR assays improved CRC detection with minimal change in specificity. Further validation of this two-gene blood test with a view to application in screening is now indicated.


PLOS ONE | 2012

Discovery and Validation of Molecular Biomarkers for Colorectal Adenomas and Cancer with Application to Blood Testing

Susanne K. Pedersen; Robert Dunne; Glenn Brown; Letitia Pimlott; Snigdha Gaur; Aidan McEvoy; Melissa K. Thomas; David Wattchow; Peter L. Molloy; Graeme P. Young

Background & Aims Colorectal cancer incidence and deaths are reduced by the detection and removal of early-stage, treatable neoplasia but we lack proven biomarkers sensitive for both cancer and pre-invasive adenomas. The aims of this study were to determine if adenomas and cancers exhibit characteristic patterns of biomarker expression and to explore whether a tissue-discovered (and validated) biomarker is differentially expressed in the plasma of patients with colorectal adenomas or cancer. Methods Candidate RNA biomarkers were identified by oligonucleotide microarray analysis of colorectal specimens (222 normal, 29 adenoma, 161 adenocarcinoma and 50 colitis) and validated in a previously untested cohort of 68 colorectal specimens using a custom-designed oligonucleotide microarray. One validated biomarker, KIAA1199, was assayed using qRT-PCR on plasma extracted RNA from 20 colonoscopy-confirmed healthy controls, 20 patients with adenoma, and 20 with cancer. Results Genome-wide analysis uncovered reproducible gene expression signatures for both adenomas and cancers compared to controls. 386/489 (79%) of the adenoma and 439/529 (83%) of the adenocarcinoma biomarkers were validated in independent tissues. We also identified genes differentially expressed in adenomas compared to cancer. KIAA1199 was selected for further analysis based on consistent up-regulation in neoplasia, previous studies and its interest as an uncharacterized gene. Plasma KIAA1199 RNA levels were significantly higher in patients with either cancer or adenoma (31/40) compared to neoplasia-free controls (6/20). Conclusions Colorectal neoplasia exhibits characteristic patterns of gene expression. KIAA1199 is differentially expressed in neoplastic tissues and KIAA1199 transcripts are more abundant in the plasma of patients with either cancer or adenoma compared to controls.


Clinical and translational gastroenterology | 2016

A Blood Test for Methylated BCAT1 and IKZF1 vs. a Fecal Immunochemical Test for Detection of Colorectal Neoplasia.

Erin L. Symonds; Susanne K. Pedersen; Rohan Baker; David H. Murray; Snigdha Gaur; Stephen R. Cole; Geetha Gopalsamy; Dileep Mangira; Graeme P. Young

Objectives:To compare the performance of a new blood test for colorectal cancer (CRC) to an established fecal immunochemical test (FIT) in a study population with the full range of neoplastic and non-neoplastic pathologies encountered in the colon and rectum.Methods:Volunteers were asked to complete a FIT prior to colonoscopy. Blood was collected after bowel preparation but prior to colonoscopy, and plasma was assayed for the presence of methylated BCAT1 and IKZF1 DNA using a multiplex real-time PCR assay. Sensitivity and specificity estimates for the blood test were calculated from true- and false-positive rates for neoplasia and compared with FIT at a range of fecal hemoglobin (Hb) concentration positivity thresholds.Results:In total, 1,381 volunteers (median age 64 years; 49% male) completed both tests prior to colonoscopy. Estimated sensitivity of the BCAT1/IKZF1 blood test for CRC was 62% (41/66; 95% confidence interval 49–74%) with a specificity of 92% (1207/1315; 90–93%). FIT returned the same specificity at a cutoff of 60 μg Hb/g, at which its corresponding sensitivity for cancer was 64% (42/66; 51–75%). In the range of commonly used FIT cutoffs, respective cancer sensitivity and specificity estimates with FIT were: 59% (46–71%) and 93% (92–95%) at 80 μg Hb/g, and 79% (67–88%) and 81% (78–83%) at 10 μg Hb/g. Although estimated sensitivities were not significantly different between the two tests for any stage of cancer, FIT showed a significantly higher sensitivity for advanced adenoma at the lower cutoffs. Specificity of FIT, but not of the BCAT1/IKZF1 blood test, deteriorated substantially in people with overt blood in the feces. When combining FIT (cutoff 10 μg Hb/g) with the BCAT1/IKZF1 blood test, sensitivity for cancer was 89% (79–96%) at 74% (72–77%) specificity.Conclusions:A test based on detection of methylated BCAT1/IKZF1 DNA in blood has comparable sensitivity but better specificity for CRC than FIT at the commonly used positivity threshold of 10 μg Hb/g. Further evaluation of the new test relative to FIT in the population screening context is now required to fully understand the potential advantages and disadvantages of these biomarkers in screening.


Cancer Medicine | 2016

A cross-sectional study comparing a blood test for methylated BCAT1 and IKZF1 tumor-derived DNA with CEA for detection of recurrent colorectal cancer

Graeme P. Young; Susanne K. Pedersen; Scott Mansfield; David H. Murray; Rohan Baker; Philippa Rabbitt; Susan Byrne; Libby Bambacas; Paul Hollington; Erin L. Symonds

Recurrence will develop in 30–50% of colorectal cancer (CRC) cases despite apparent clearance following treatment. Carcinoembryonic antigen (CEA) is the only guideline‐recommended blood test for monitoring cases for recurrence, but its sensitivity and specificity are suboptimal. This observational study compared a novel 2‐gene (methylated BCAT1 and IKZF1 DNA) blood test with CEA for detection of recurrent CRC. We conducted a paired comparison of the BCAT1/IKZF1 test with CEA (cut‐off 5 ng/mL) in blood from patients in remission after treatment for primary CRC and undergoing surveillance. Blood collected in the 12 months prior to or 3 months after complete investigational assessment of recurrence status were assayed and the results compared by McNemars test. Of 397 patients enrolled, 220 underwent satisfactory assessment for recurrence and 122 had blood testing performed within the prescribed period. In 28 cases with recurrent CRC, CEA was positive in 9 (32%; 95% CI 16–52%) compared to 19 (68%; 95% CI 48–84%) positive for methylated BCAT1/IKZF1 (P = 0.002). All samples that were CEA positive were also BCAT1/IKZF1 positive. In 94 patients without clinically detectable recurrence, CEA was positive in 6 (6%, 95% CI 2–13%) and BCAT1/IKZF1 in 12 (13%, 95% CI 7–21%), P = 0.210. The odds ratio of a positive CEA test for recurrence was 6.9 (95% CI 2–22) compared to 14.4 (5–39) for BCAT1/IKZF1. The BCAT1/IKZF1 test was more sensitive for recurrence than CEA and the odds of recurrence given a positive test was twice that of CEA. The BCAT1/IKZF1 test should be further considered for monitoring cases for recurrence.


Epigenetics | 2014

CAHM, a long non-coding RNA gene hypermethylated in colorectal neoplasia.

Susanne K. Pedersen; Susan Margaret Mitchell; Lloyd D. Graham; Aidan McEvoy; Melissa K. Thomas; Rohan Baker; Jason P. Ross; Zheng-Zhou Xu; Thu Ho; Graeme P. Young; Peter L. Molloy

The CAHM gene (Colorectal Adenocarcinoma HyperMethylated), previously LOC100526820, is located on chromosome 6, hg19 chr6:163 834 097–163 834 982. It lacks introns, encodes a long non-coding RNA (lncRNA) and is located adjacent to the gene QKI, which encodes an RNA binding protein. Deep bisulphite sequencing of ten colorectal cancer (CRC) and matched normal tissues demonstrated frequent hypermethylation within the CAHM gene in cancer. A quantitative methylation-specific PCR (qMSP) was used to characterize additional tissue samples. With a threshold of 5% methylation, the CAHM assay was positive in 2/26 normal colorectal tissues (8%), 17/21 adenomas (81%), and 56/79 CRC samples (71%). A reverse transcriptase-qPCR assay showed that CAHM RNA levels correlated negatively with CAHM % methylation, and therefore CAHM gene expression is typically decreased in CRC. The CAHM qMSP assay was applied to DNA isolated from plasma specimens from 220 colonoscopy-examined patients. Using a threshold of 3 pg methylated genomic DNA per mL plasma, methylated CAHM sequences were detected in the plasma DNA of 40/73 (55%) of CRC patients compared with 3/73 (4%) from subjects with adenomas and 5/74 (7%) from subjects without neoplasia. Both the frequency of detection and the amount of methylated CAHM DNA released into plasma increased with increasing cancer stage. Methylated CAHM DNA shows promise as a plasma biomarker for use in screening for CRC.


Genes | 2016

Evaluation of Methylation Biomarkers for Detection of Circulating Tumor DNA and Application to Colorectal Cancer

Susan M. Mitchell; Thu Ho; Glenn Brown; Rohan Baker; Melissa L. Thomas; Aidan McEvoy; Zheng-Zhou Xu; Jason P. Ross; Trevor Lockett; Graeme P. Young; Susanne K. Pedersen; Peter L. Molloy

Solid tumors shed DNA into circulation, and there is growing evidence that the detection of circulating tumor DNA (ctDNA) has broad clinical utility, including monitoring of disease, prognosis, response to chemotherapy and tracking tumor heterogeneity. The appearance of ctDNA in the circulating cell-free DNA (ccfDNA) isolated from plasma or serum is commonly detected by identifying tumor-specific features such as insertions, deletions, mutations and/or aberrant methylation. Methylation is a normal cell regulatory event, and since the majority of ccfDNA is derived from white blood cells (WBC), it is important that tumour-specific DNA methylation markers show rare to no methylation events in WBC DNA. We have used a novel approach for assessment of low levels of DNA methylation in WBC DNA. DNA methylation in 29 previously identified regions (residing in 17 genes) was analyzed in WBC DNA and eight differentially-methylated regions (DMRs) were taken through to testing in clinical samples using methylation specific PCR assays. DMRs residing in four genes, BCAT1, GRASP, IKZF1 and IRF4, exhibited low positivity, 3.5% to 7%, in the plasma of colonoscopy-confirmed healthy subjects, with the sensitivity for detection of ctDNA in colonoscopy-confirmed patients with colorectal cancer being 65%, 54.5%, 67.6% and 59% respectively.


Asian Pacific Journal of Cancer Prevention | 2016

Improving Participation in Colorectal Cancer Screening: a Randomised Controlled Trial of Sequential Offers of Faecal then Blood Based Non-Invasive Tests

Erin L. Symonds; Susanne K. Pedersen; Stephen R. Cole; Joseph Massolino; Daniel Byrne; John Guy; Patricia Backhouse; Robert J. Fraser; Graeme P. Young

BACKGROUND Poor participation rates are often observed in colorectal cancer (CRC) screening programs utilising faecal occult blood tests. This may be from dislike of faecal sampling, or having benign bleeding conditions that can interfere with test results. These barriers may be circumvented by offering a blood-based DNA test for screening. The aim was to determine if program participation could be increased by offering a blood test following faecal immunochemical test (FIT) non-participation. MATERIALS AND METHODS People were invited into a CRC screening study through their General Practice and randomised into control or intervention (n=600/group). Both groups were mailed a FIT (matching conventional screening programs). Participation was defined as FIT completion within 12wk. Intervention group non-participants were offered a screening blood test (methylated BCAT1/IKZF1). Overall participation was compared between the groups. RESULTS After 12wk, FIT participation was 82% and 81% in the control and intervention groups. In the intervention 96 FIT non- participants were offered the blood test - 22 completed this test and 19 completed the FIT instead. Total screening in the intervention group was greater than the control (88% vs 82%, p<0.01). Of 12 invitees who indicated that FIT was inappropriate for them (mainly due to bleeding conditions), 10 completed the blood test (83%). CONCLUSIONS Offering a blood test to FIT non-participants increased overall screening participation compared to a conventional FIT program. Blood test participation was particularly high in invitees who considered FIT to be inappropriate for them. A blood test may be a useful adjunct test within a FIT program.


Frontiers in Oncology | 2018

The Use of Circulating Tumor DNA for Prognosis of Gastrointestinal Cancers

Hariti Saluja; Christos Stelios Karapetis; Susanne K. Pedersen; Graeme P. Young; Erin L. Symonds

Gastrointestinal cancers, including oesophageal, gastric and colorectal cancers (CRC) have high rates of disease recurrence despite curative resection. There are a number of recent studies that have investigated the use of circulating tumor DNA (ctDNA) for prognostic value in these cancers. We reviewed studies that had been published prior to March 2018 that assessed the prognostic values of ctDNA in patients with oesophageal and gastric cancers, gastrointestinal stromal tumors (GIST) and CRC. We identified 63 eligible clinical studies that focussed on recurrence and survival. Studies assessed investigated various ctDNA biomarkers in patients with different stages of cancer undergoing surgical resection, chemotherapy and no treatment. For oesophageal squamous cell carcinoma and oesophageal adenocarcinoma, methylation of certain genes such as APC and DAPK have been highlighted as promising biomarkers for prognostication, but these studies are limited and more comprehensive research is needed. Studies focusing on gastric cancer patients showed that methylation of ctDNA in SOX17 and APC were independently associated with poor survival. Two studies demonstrated an association between ctDNA and recurrence and survival in GIST patients, but more studies are needed for this type of gastrointestinal cancer. A large proportion of the literature was on CRC which identified both somatic mutations and DNA methylation biomarkers to determine prognosis. ctDNA biomarkers that identified somatic mutations were more effective if they were personalized based on mutations found in the primary tumor tissue, but ctDNA methylation studies identified various biomarkers that predicted increased risk of recurrence, poor disease free survival and overall survival. While the use of non-invasive ctDNA biomarkers for prognosis is promising, larger studies are needed to validate the clinical utility for optimizing treatment and surveillance strategies to reduce mortality from gastrointestinal cancers.

Collaboration


Dive into the Susanne K. Pedersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin L. Symonds

Repatriation General Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter L. Molloy

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glenn Brown

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Robert Dunne

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thu Ho

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge