Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanne Kirchhof is active.

Publication


Featured researches published by Susanne Kirchhof.


European Journal of Pharmaceutics and Biopharmaceutics | 2015

Hydrogels in ophthalmic applications

Susanne Kirchhof; Achim Goepferich; Ferdinand Brandl

More and more people worldwide are affected by severe eye diseases eventually leading to visual impairment or blindness. In most cases, the treatment involves the application of ophthalmic dosage forms such as eye drops, suspensions or ointments. Unfortunately, some of the therapeutic approaches have major shortcomings, especially in the treatment of the posterior segment of the eye, where many vision-threatening diseases originate. Therefore, research focuses on the development of new materials (e.g., for vitreous substitution) and more advanced drug delivery systems. Hydrogels are an extremely versatile class of materials with many potential applications in ophthalmology. They found widespread application as soft contact lenses, foldable intraocular lenses, in situ gelling formulations for ophthalmic drug delivery and ocular adhesives for wound repair; their use as vitreous substitutes and intravitreal drug delivery systems is currently under investigation. In this article, we review the different applications of hydrogels in ophthalmology with special emphasis placed on the used polymers and their suitability as ocular drug delivery systems.


Journal of Materials Chemistry B | 2013

Investigation of the Diels–Alder reaction as a cross-linking mechanism for degradable poly(ethylene glycol) based hydrogels

Susanne Kirchhof; Ferdinand Brandl; Nadine Hammer; Achim Goepferich

The Diels-Alder (DA) reaction was investigated as a cross-linking mechanism for poly(ethylene glycol) (PEG) based hydrogels. Two complementary macromonomers were synthesized by functionalizing star-shaped PEG with furyl and maleimide groups. Gel formation occurred in water at 37 °C; the gelation time ranged between 171 ± 25 min and 14 ± 1 min depending on the used hydrogel formulation. The complex shear modulus was dependent on the concentration, branching factor and molecular weight of the macromonomers; values between 2821 ± 1479 Pa and 37097 ± 6698 Pa were observed. Hydrogel swelling and degradation were influenced by the same parameters; the degradation time varied between a few days and several weeks. Gel dissolution was found to occur by retro-DA reaction and subsequent hydrolysis of maleimide groups. Calculations of the network mesh size revealed that the prepared hydrogels would be suitable for the controlled release of therapeutic proteins.


Macromolecular Bioscience | 2015

Protein Compatibility of Selected Cross-linking Reactions for Hydrogels

Nadine Hammer; Ferdinand Brandl; Susanne Kirchhof; Viktoria Messmann; Achim Goepferich

The compatibility of selected cross-linking reactions with lysozyme is investigated. Michael-type additions of nucleophilic amino acids to maleimide, vinyl sulfone and acrylamide groups are detected by gel electrophoresis. The degree of modification depends on the polymer and the pH. Complete modification with more than five PEG chains is observed after incubation with mPEG5k-vinyl sulfone at pH 9, whereas 96% of the protein remains unmodified after incubation with mPEG5k-acrylamide at pH 4. Incubation with mPEG5k-thiol results in thiol-disulfide exchange reactions. Hydrogel preparation is simulated by using polymer mixtures. Protein modifications are detected, which may affect the protein structure, decrease activity and bioavailability, and increase the risk for immune responses.


Journal of Materials Chemistry B | 2015

New insights into the cross-linking and degradation mechanism of Diels–Alder hydrogels

Susanne Kirchhof; Andrea Strasser; Hans-Joachim Wittmann; Viktoria Messmann; Nadine Hammer; Achim Goepferich; Ferdinand Brandl

Eight-armed poly(ethylene glycol) was functionalized with furyl and maleimide groups. The two macromonomers were cross-linked by Diels-Alder (DA) reactions and the degradation behavior of the formed hydrogels was investigated. UV spectroscopy showed that maleimide groups were subject to ring-opening hydrolysis above pH 5.5, with the reaction rate depending on the pH and temperature. As a result of this, the gelation kinetics and stiffness of DA hydrogels were dependent on the temperature and the pH of the cross-linking medium, as demonstrated by rheological experiments. The gel time varied between 87.8 min (pH 3.0, 37 °C) and 374.7 min (pH 7.4, 20 °C). Values between 420 Pa (pH 9.0, 37 °C) and 3327 Pa (pH 3.0, 37 °C) were measured for the absolute value of the complex shear modulus. Hydrogel swelling and degradation were influenced by the same parameters. With increasing pH and temperature the degradation time was reduced from 98 days (pH 7.4, 20 °C) to 2 days (pH 7.4, 50 °C); no degradation was observed at pH 3.0 and 5.5. Molecular modeling studies of the DA and retro-Diels-Alder (rDA) moieties revealed that hydrogel degradation occurred by rDA reaction followed by OH--catalyzed ring-opening hydrolysis of maleimide groups to unreactive maleamic acid derivatives.


Molecular Pharmaceutics | 2015

Diels-Alder Hydrogels for Controlled Antibody Release: Correlation between Mesh Size and Release Rate.

Susanne Kirchhof; Michela Abrami; Viktoria Messmann; Nadine Hammer; Achim Goepferich; Mario Grassi; Ferdinand Brandl

Eight-armed PEG, molecular mass 10 kDa, was functionalized with furyl and maleimide groups, respectively; the obtained macromonomers were cross-linked via Diels-Alder chemistry. The mesh size (ξ) of the prepared hydrogels was determined by swelling studies, rheology, and low field NMR spectroscopy. The in vitro release of fluorescein isothiocyanate labeled dextrans (FDs) and bevacizumab was investigated. The average mesh size (ξavg) increased from 5.8 ± 0.1 nm to 56 ± 13 nm during degradation, as determined by swelling studies. The result of the rheological measurements (8.0 nm) matched the initial value of ξavg. Low field NMR spectroscopy enabled the determination of the mesh size distribution; the most abundant mesh size was found to be 9.2 nm. In combination with the hydrodynamic radius of the molecule (Rh), the time-dependent increase of ξavg was used to predict the release profiles of incorporated FDs applying an obstruction-scaling model. The predicted release profiles matched the experimentally determined release profiles when Rh < ξavg. However, significant deviations from the theoretical predictions were observed when Rh ≥ ξavg, most likely due to the statistical distribution of ξ in real polymer networks. The release profile of bevacizumab differed from those of equivalently sized FDs. The delayed release of bevacizumab was most likely a result of the globular structure and rigidity of the protein. The observed correlation between ξ and the release rate could facilitate the design of controlled release systems for antibodies.


European Journal of Pharmaceutics and Biopharmaceutics | 2015

Diels-Alder hydrogels with enhanced stability: First step toward controlled release of bevacizumab

Susanne Kirchhof; Manuel Gregoritza; Viktoria Messmann; Nadine Hammer; Achim Goepferich; Ferdinand Brandl

Eight-armed PEG was functionalized with furyl and maleimide groups (8armPEG20k-Fur and 8armPEG20k-Mal); degradable hydrogels were obtained by cross-linking via Diels-Alder chemistry. To increase the stability to degradation, the macromonomers were modified by introducing a hydrophobic 6-aminohexanoic acid spacer between PEG and the reactive end-groups (8armPEG20k-Ahx-Fur and 8armPEG20k-Ahx-Mal). In an alternative approach, the number of reactive groups per macromonomer was increased by branching the terminal ends of eight-armed PEG with lysine (Lys) and Ahx residues (8armPEG20k-Lys-Ahx-Fur2 and 8armPEG20k-Lys-Ahx-Mal2). The hydrolytic resistance of the synthesized macromonomers was determined by UV spectroscopy; the obtained hydrogels were characterized by rheology and degradation studies. The degradation time of 5% (w/v) 8armPEG20k-Ahx hydrogels (28days) was twice as long as the degradation time of 5% (w/v) 8armPEG20k hydrogels (14days); this is explained by increased hydrolytic resistance of the maleimide group. Using dendritic 8armPEG20k-Lys-Ahx macromonomers substantially increased the stability of the resulting hydrogels; degradation of 5% (w/v) 8armPEG20k-Lys-Ahx hydrogels occurred after 34 weeks. 8armPEG20k hydrogels had the largest mesh size of all tested hydrogels, while hydrogels made from dendritic 8armPEG20k-Lys-Ahx macromonomers showed the smallest value. To evaluate their potential for the controlled release of therapeutic antibodies, the hydrogels were loaded with bevacizumab. The incorporated bevacizumab was released over 10 days (8armPEG20k) and 42days (8armPEG20k-Ahx), respectively; release from 8armPEG20k-Lys-Ahx hydrogels was not completed after 105 days. In summary, we believe that 8armPEG20k-Ahx or 8armPEG20k-Lys-Ahx hydrogels could serve as controlled release system for therapeutic antibodies such as bevacizumab.


Molecular Pharmaceutics | 2015

Branched Polymer–Drug Conjugates for Multivalent Blockade of Angiotensin II Receptors

Robert Hennig; Anika Veser; Susanne Kirchhof; Achim Goepferich

The use of angiotensin receptor blockers (ARBs) for treatment of ocular diseases associated with neovascularizations, such as proliferative diabetic retinopathy, shows tremendous promise but is presently limited due to short intravitreal half-life. Conjugation of ARB molecules to branched polymers could vastly augment their therapeutic efficacy. EXP3174, a potent non-peptide ARB, was conjugated to branched poly(ethylene glycol) (PEG) and poly(amido amine) (PAMAM) dendrimers: 7.8 ligand molecules were tethered to each 40 kDa PEG molecule whereas 16.7 ligand molecules were linked to each PAMAM generation 5 dendrimer. The multivalent PEG and PAMAM conjugates blocked AT1R signaling with an IC50 of 224 and 36.3 nM, respectively. The 6-fold higher affinity of the multivalent ligand-conjugated PAMAM dendrimers was due to their unique microarchitecture and ability to suppress polymer-drug interactions. Remarkably, both polymer-drug conjugates exhibited no cytotoxicity, in stark contrast to plain PAMAM dendrimers. With sufficiently long vitreous half-lives, both synthesized polymer-ARB conjugates have the potential to pave a new path for the therapy of ocular diseases accompanied by retinal neovascularizations.


Tissue Engineering Part A | 2017

Suitability of different natural and synthetic biomaterials for dental pulp tissue engineering

Kerstin M. Galler; Ferdinand Brandl; Susanne Kirchhof; Matthias Widbiller; Andreas Eidt; Wolfgang Buchalla; Achim Goepferich; Gottfried Schmalz

Dental pulp tissue engineering is possible after insertion of pulpal stem cells combined with a scaffold into empty root canals. Commonly used biomaterials are collagen or poly(lactic) acid, which are either difficult to modify or to insert into such a narrow space. New hydrogel scaffolds with bioactive, specifically tailored functions could optimize the conditions for this approach. Different synthetic and natural hydrogels were tested for their suitability to engineer dental pulp. Two functionalized modifications of polyethylene glycol were developed in this study and compared to a self-assembling peptide, as well as to collagen and fibrin. Cell viability of dental pulp stem cells in test materials was assessed over two weeks. Cells in selected test materials laden with dentin-derived growth factors were inserted into human tooth roots and implanted subcutaneously into immunocompromised mice. In vitro cell culture exhibited distinct differences between scaffold types, where viability was significantly higher in natural compared to synthetic materials. In vivo experiments showed considerable differences regarding scaffold degradation, soft tissue formation, vascularization, and odontoblast-like cell differentiation. Fibrin appeared most suitable to enable generation of a pulp-like tissue and differentiation of cells into odontoblasts at the cell-dentin interface. In conclusion, natural materials, especially fibrin, proved to be superior compared to synthetic scaffolds regarding cell viability and dental pulp-like tissue formation.


Journal of Controlled Release | 2014

Cleavable carbamate linkers for controlled protein delivery from hydrogels

Nadine Hammer; Ferdinand Brandl; Susanne Kirchhof; Achim Goepferich


Archive | 2012

Herstellung von hydrogelen mittels diels-alder reaktion

Achim Göpferich; Ferdinand Brandl; Susanne Kirchhof

Collaboration


Dive into the Susanne Kirchhof's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadine Hammer

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Eidt

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar

Anika Veser

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge