Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanne Kneitz is active.

Publication


Featured researches published by Susanne Kneitz.


Circulation | 2007

MicroRNAs in the human heart : A clue to fetal gene reprogramming in heart failure

Thomas Thum; Paolo Galuppo; Christian Wolf; Jan Fiedler; Susanne Kneitz; Linda W. van Laake; Pieter A. Doevendans; Jürgen Borlak; Axel Haverich; Carina Gross; Stefan Engelhardt; Georg Ertl; Johann Bauersachs

Background— Chronic heart failure is characterized by left ventricular remodeling and reactivation of a fetal gene program; the underlying mechanisms are only partly understood. Here we provide evidence that cardiac microRNAs, recently discovered key regulators of gene expression, contribute to the transcriptional changes observed in heart failure. Methods and Results— Cardiac transcriptome analyses revealed striking similarities between fetal and failing human heart tissue. Using microRNA arrays, we discovered profound alterations of microRNA expression in failing hearts. These changes closely mimicked the microRNA expression pattern observed in fetal cardiac tissue. Bioinformatic analysis demonstrated a striking concordance between regulated messenger RNA expression in heart failure and the presence of microRNA binding sites in the respective 3 untranslated regions. Messenger RNAs upregulated in the failing heart contained preferentially binding sites for downregulated microRNAs and vice versa. Mechanistically, transfection of cardiomyocytes with a set of fetal microRNAs induced cellular hypertrophy as well as changes in gene expression comparable to the failing heart. Conclusions— Our data support a novel mode of regulation for the transcriptional changes in cardiac failure. Reactivation of a fetal microRNA program substantially contributes to alterations of gene expression in the failing human heart.


Circulation | 2011

MicroRNA-24 Regulates Vascularity After Myocardial Infarction

Jan Fiedler; Virginija Jazbutyte; Bettina C. Kirchmaier; Shashi Kumar Gupta; Johan M. Lorenzen; Dorothee Hartmann; Paolo Galuppo; Susanne Kneitz; John T.G. Pena; Cherin Sohn-Lee; Xavier Loyer; Juergen Soutschek; Thomas Brand; Thomas Tuschl; Joerg Heineke; Ulrich Martin; Stefan Schulte-Merker; Georg Ertl; Stefan Engelhardt; Johann Bauersachs; Thomas Thum

Background— Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood. Methods and Results— Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2–associated death promoter) and Sirtuin1 were identified by transcriptome, protein arrays, and chromatin immunoprecipitation analyses. Overexpression of miR-24 or silencing of its targets significantly impaired angiogenesis in zebrafish embryos. Blocking of endothelial miR-24 limited myocardial infarct size of mice via prevention of endothelial apoptosis and enhancement of vascularity, which led to preserved cardiac function and survival. Conclusions— Our findings indicate that miR-24 acts as a critical regulator of endothelial cell apoptosis and angiogenesis and is suitable for therapeutic intervention in the setting of ischemic heart disease.


Current Biology | 2013

The Stomatal Response to Reduced Relative Humidity Requires Guard Cell-Autonomous ABA Synthesis

Hubert Bauer; Peter Ache; Silke Lautner; Joerg Fromm; Wolfram Hartung; Khaled A. S. Al-Rasheid; Sophia Sonnewald; Uwe Sonnewald; Susanne Kneitz; Nicole Lachmann; Ralf R. Mendel; Florian Bittner; Alistair M. Hetherington; Rainer Hedrich

Stomata are pores on the leaf surface, bounded by two guard cells, which control the uptake of CO(2) for photosynthesis and the concomitant loss of water vapor. In 1898, Francis Darwin showed that stomata close in response to reduced atmospheric relative humidity (rh); however, our understanding of the signaling pathway responsible for coupling changes in rh to alterations in stomatal aperture is fragmentary. The results presented here highlight the primacy of abscisic acid (ABA) in the stomatal response to drying air. We show that guard cells possess the entire ABA biosynthesis pathway and that it appears upregulated by positive feedback by ABA. When wild-type Arabidopsis and the ABA-deficient mutant aba3-1 were exposed to reductions in rh, the aba3-1 mutant wilted, whereas the wild-type did not. However, when aba3-1 plants, in which ABA synthesis had been specifically rescued in guard cells, were challenged with dry air, they did not wilt. These data indicate that guard cell-autonomous ABA synthesis is required for and is sufficient for stomatal closure in response to low rh. Guard cell-autonomous ABA synthesis allows the plant to tailor leaf gas exchange exquisitely to suit the prevailing environmental conditions.


International Journal of Cancer | 2009

Expression of microRNA‐221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence

Martin Spahn; Susanne Kneitz; Claus-Jürgen Scholz; Nico Stenger; Thomas Rüdiger; Philipp Ströbel; H. Riedmiller; Burkhard Kneitz

Emerging evidence shows that microRNAs (miR) are involved in the pathogenesis of a variety of cancers, including prostate carcinoma (PCa). Little information is available regarding miR expression levels in lymph node metastasis of prostate cancer or the potential of miRs as prognostic markers in this disease. Therefore, we analyzed the global expression of miRs in benign, hyperplastic prostate tissue (BPH), primary PCa of a high risk group of PCa patients, and corresponding metastatic tissues by microarray analysis. Consistent with the proposal that some miRs are oncomirs, we found aberrant expression of several miRs, including the downregulation of miR‐221, in PCa metastasis. Downregulation of miR‐221 was negatively correlated with the expression of the proto‐oncogen c‐kit in primary carcinoma. In a large study cohort, the prostate‐specific oncomir miR‐221 was progressively downregulated in aggressive forms of PCa. Downregulation of miR‐221 was associated with clinicopathological parameters, including the Gleason score and the clinical recurrence during follow up. Kaplan–Meier estimates and Cox proportional hazard models showed that miR‐221 downregulation was linked to tumor progression and recurrence in a high risk prostate cancer cohort. Our results showed that progressive miR‐221 downregulation hallmarks metastasis and presents a novel prognostic marker in high risk PCa. This suggests that miR‐221 has potential as a diagnostic marker and therapeutic target in PCa.


Circulation Research | 2010

Short Communication: Asymmetric Dimethylarginine Impairs Angiogenic Progenitor Cell Function in Patients With Coronary Artery Disease Through a MicroRNA-21–Dependent Mechanism

Felix Fleissner; Virginija Jazbutyte; Jan Fiedler; Shashi Kumar Gupta; Xiaoke Yin; Qingbo Xu; Paolo Galuppo; Susanne Kneitz; Manuel Mayr; Georg Ertl; Johann Bauersachs; Thomas Thum

Rationale: The endogenous nitric oxide synthase inhibitor asymmetrical dimethylarginine (ADMA) is increased in patients with coronary artery disease and may regulate function of circulating angiogenic progenitor cells (APCs) by small regulatory RNAs. Objectives: To study the role of microRNAs in ADMA-mediated impairment of APCs. Methods and Results: By using microarray analyses, we established microRNA expression profiles of human APCs. We used ADMA to induce APC dysfunction and found 16 deregulated microRNAs. We focused on miR-21, which was 3-fold upregulated by ADMA treatment. Overexpression of miR-21 in human APCs impaired migratory capacity. To identify regulated miR-21 targets, we used proteome analysis, using difference in-gel electrophoresis followed by mass spectrometric analysis of regulated proteins. We found that transfection of miR-21 precursors significantly repressed superoxide dismutase 2 in APCs, which resulted in increased intracellular reactive oxygen species concentration and impaired nitric oxide bioavailability. MiR-21 further repressed sprouty-2, leading to Erk Map kinase–dependent reactive oxygen species formation and APC migratory defects. Small interference RNA–mediated superoxide dismutase 2 or sprouty-2 reduction also increased reactive oxygen species formation and impaired APC migratory capacity. ADMA-mediated reactive oxygen species formation and APC dysfunction was rescued by miR-21 blockade. APCs from patients with coronary artery disease and high ADMA plasma levels displayed >4-fold elevated miR-21 levels, low superoxide dismutase 2 expression, and impaired migratory capacity, which could be normalized by miR-21 antagonism. Conclusions: We identified a novel miR-21–dependent mechanism of ADMA-mediated APC dysfunction. MiR-21 antagonism therefore emerges as an interesting strategy to improve dysfunctional APCs in patients with coronary artery disease.


Circulation | 2011

Deletion of Cardiomyocyte Mineralocorticoid Receptor Ameliorates Adverse Remodeling After Myocardial Infarction

Daniela Fraccarollo; Stefan Berger; Paolo Galuppo; Susanne Kneitz; Lutz Hein; Günther Schütz; Stefan Frantz; Georg Ertl; Johann Bauersachs

Background— Mineralocorticoid receptor (MR) blockade improves morbidity and mortality among patients with heart failure; however, the underlying mechanisms are still under investigation. We studied left ventricular remodeling after myocardial infarction in mice with cardiomyocyte-specific inactivation of the MR gene (MRMLCCre) that were generated with a conditional MR allele (MRflox) in combination with a transgene expressing Cre recombinase under control of the myosin light-chain (MLC2a) gene promoter. Methods and Results— Control (MRflox/flox, MRflox/wt) and MRMLCCre mice underwent coronary artery ligation. MR ablation had no detectable baseline effect on cardiac morphology and function. The progressive left ventricular chamber enlargement and functional deterioration in infarcted control mice, detected by echocardiography and conductance catheter analysis during the 8-week observation period, were substantially attenuated in MRMLCCre mice. Chronically infarcted MRMLCCre mice displayed attenuated pulmonary edema, reduced cardiac hypertrophy, increased capillary density, and reduced accumulation of extracellular matrix proteins in the surviving left ventricular myocardium. Moreover, cardiomyocyte-specific MR ablation prevented the increases in myocardial and mitochondrial O2·− production and upregulation of the NADPH oxidase subunits Nox2 and Nox4. At 7 days, MRMLCCre mice exhibited enhanced infarct neovessel formation and collagen structural organization associated with reduced infarct expansion. Mechanistically, cardiomyocytes lacking MR displayed accelerated stress-induced activation and subsequent suppression of nuclear factor-&kgr;B and reduced apoptosis early after myocardial infarction. Conclusion— Cardiomyocyte-specific MR deficiency improved infarct healing and prevented progressive adverse cardiac remodeling, contractile dysfunction, and molecular alterations in ischemic heart failure, highlighting the importance of cardiomyocyte MR for heart failure development and progression.


Hypertension | 2008

Immediate Mineralocorticoid Receptor Blockade Improves Myocardial Infarct Healing by Modulation of the Inflammatory Response

Daniela Fraccarollo; Paolo Galuppo; Susanne Schraut; Susanne Kneitz; Nico van Rooijen; Georg Ertl; Johann Bauersachs

Mineralocorticoid receptor (MR) blockade reduces morbidity and mortality after acute myocardial infarction; however, the underlying mechanisms are still under investigation. This study examined whether MR antagonism promotes healing of the infarcted myocardium. Starting immediately after coronary ligation, male Wistar rats were treated with the selective MR antagonist eplerenone (100 mg/kg per day by gavage) or placebo for 2 to 7 days. At 7 days, eplerenone therapy versus placebo significantly reduced thinning and dilatation of the infarcted wall, improved left ventricular function, and enhanced neovessel formation in the injured myocardium. At 2 days, eplerenone-treated rats displayed lower plasma corticosterone levels, higher circulating blood monocytes, and more macrophages infiltrating the infarcted myocardium. MR blockade led to a transient upregulation (at days 2 and 3 but not at day 7) of monocyte chemoattractant protein-1, tumor necrosis factor-&agr;, interleukin-1&bgr;, interleukin-6, interleukin-10, and interleukin-4 and an increase in factor XIIIa protein expression in the healing myocardium. Prevention of macrophage accumulation into the infarct zone by treatment with liposome-encapsulated clodronate almost abrogated the protein expression of factor XIIIa and the beneficial effects of eplerenone on infarct expansion. In conclusion, selective MR blockade immediately after myocardial infarction accelerated macrophage infiltration and transiently increased the expression of healing promoting cytokines and factor XIIIa in the injured myocardium resulting in enhanced infarct neovascularization and reduced early LV dilation and dysfunction.


Cancer Cell | 2015

Mutations in the SIX1/2 Pathway and the DROSHA/DGCR8 miRNA Microprocessor Complex Underlie High-Risk Blastemal Type Wilms Tumors

Jenny Wegert; Naveed Ishaque; Romina Vardapour; Christina Geörg; Zuguang Gu; Matthias Bieg; Barbara Ziegler; Sabrina Bausenwein; Nasenien Nourkami; Nicole Ludwig; Andreas Keller; Clemens Grimm; Susanne Kneitz; Richard D. Williams; Tas Chagtai; Kathy Pritchard-Jones; Peter van Sluis; Richard Volckmann; Jan Koster; Rogier Versteeg; T Acha; Maureen O’Sullivan; Peter Bode; Felix Niggli; Godelieve A.M. Tytgat; Harm van Tinteren; Marry M. van den Heuvel-Eibrink; Eckart Meese; Christian Vokuhl; Ivo Leuschner

Blastemal histology in chemotherapy-treated pediatric Wilms tumors (nephroblastoma) is associated with adverse prognosis. To uncover the underlying tumor biology and find therapeutic leads for this subgroup, we analyzed 58 blastemal type Wilms tumors by exome and transcriptome sequencing and validated our findings in a large replication cohort. Recurrent mutations included a hotspot mutation (Q177R) in the homeo-domain of SIX1 and SIX2 in tumors with high proliferative potential (18.1% of blastemal cases); mutations in the DROSHA/DGCR8 microprocessor genes (18.2% of blastemal cases); mutations in DICER1 and DIS3L2; and alterations in IGF2, MYCN, and TP53, the latter being strongly associated with dismal outcome. DROSHA and DGCR8 mutations strongly altered miRNA expression patterns in tumors, which was functionally validated in cell lines expressing mutant DROSHA.


The FASEB Journal | 2013

Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction

Stefan Frantz; Ulrich Hofmann; Daniela Fraccarollo; Andreas Schäfer; Stefanie Kranepuhl; Ina Hagedorn; Bernhard Nieswandt; Matthias Nahrendorf; Helga Wagner; Barbara Bayer; Christina Pachel; Michael P. Schön; Susanne Kneitz; Tobias Bobinger; Frank Weidemann; Georg Ertl; Johann Bauersachs

Myocardial infarction (MI) leads to rapid necrosis of cardiac myocytes. To achieve tissue integrity and function, inflammatory cells are activated, including monocytes/macrophages. However, the effect of monocyte/macrophage recruitment after MI remains poorly defined. After experimental MI, monocytes and macrophages were depleted through serial injections of clodronate‐containing liposomes. Monocyte/macrophage infiltration was reduced in the myocardium after MI by active treatment. Mortality was increased due to thromboembolic events in monocyte‐ and macrophage‐depleted animals (92 vs. 33%; P<0.01). Left ventricular thrombi were detectable as early as 24 h after MI; this was reproduced in a genetic model of monocyte/macrophage ablation. A general prothrombotic state, increased infarct expansion, and deficient neovascularization were not observed. Severely compromised extracellular matrix remodeling (collagen I, placebo liposome vs. clodronate liposome, 2.4±0.2 vs. 0.8±0.2 arbitrary units; P<0.001) and locally lost integrity of the endocardium after MI are potential mechanisms. Patients with a left ventricular thrombus had a relative decrease of CD14+CD16+ monocyte/macrophage subsets in the peripheral blood after MI (no thrombus vs. thrombus, 14.2±0.9 vs. 7.80±0.4%; P<0.05). In summary, monocytes/macrophages are of central importance for healing after MI. Impaired monocyte/macrophage function appears to be an unrecognized new pathophysiological mechanism for left ventricular thrombus development after MI.—Frantz, S., Hofmann, U., Fraccarollo, D., Schäfer, A., Kranepuhl, S., Hagedorn, I., Nieswandt, B., Nahrendorf, M., Wagner, H., Bayer, B., Pachel, C., Schön, M.P., Kneitz, S., Bobinger, T., Weidemann, F., Ertl, G., Bauersachs, J. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J. 27, 871–881 (2013). www.fasebj.org


The Journal of Infectious Diseases | 2008

Proinflammatory Response of Immature Human Dendritic Cells is Mediated by Dectin-1 after Exposure to Aspergillus fumigatus Germ Tubes

Markus Mezger; Susanne Kneitz; Iwona Wozniok; Oliver Kurzai; Hermann Einsele; Juergen Loeffler

BACKGROUND Invasive fungal infections caused by Aspergillus fumigatus represent a great challenge for immunocompromised patients. Pathogen detection is mediated by different receptors, including Toll-like receptors (TLRs), C-type lectins, and pentraxines. However, little is known about their relevance for immature human dendritic cells (iDCs). METHODS The gene expression pattern of iDCs after exposure to A. fumigatus germ tubes was studied by use of whole genome microarray analysis and real-time polymerase chain reaction. Fungal receptors were targeted by means of short interfering RNAs (siRNAs), which were used to knock down expression of TLR2, TLR4, DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), PTX3 (pentraxin-related gene), dectin-1 (C-type lectin domain family 7, member A), and CARD9 (caspase recruitment domain family, member 9). RESULTS Exposure to A. fumigatus induced expression of cytokines, chemokines, costimulatory molecules, and genes involved in prostaglandin synthesis, as well as genes related to fungal recognition and phagocytosis. Silencing of dectin-1 resulted in reduced expression of proinflammatory cytokines (tumor necrosis factor-alpha and interleukin-12), which was also reduced by anti-Dectin-1 antibody treatment prior to exposure to A. fumigatus, zymosan, or Candida albicans. CONCLUSION Dectin-1 was identified as an important receptor for A. fumigatus and C. albicans on human iDCs and was found to be involved in the induction of a proinflammatory cytokine response.

Collaboration


Dive into the Susanne Kneitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Spahn

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Ertl

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge