Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanne Lorenz is active.

Publication


Featured researches published by Susanne Lorenz.


BMC Genomics | 2014

Performance comparison of four exome capture systems for deep sequencing

Chandra Sekhar Reddy Chilamakuri; Susanne Lorenz; Mohammed Amin Madoui; Daniel Vodák; Jinchang Sun; Eivind Hovig; Ola Myklebost; Leonardo A. Meza-Zepeda

BackgroundRecent developments in deep (next-generation) sequencing technologies are significantly impacting medical research. The global analysis of protein coding regions in genomes of interest by whole exome sequencing is a widely used application. Many technologies for exome capture are commercially available; here we compare the performance of four of them: NimbleGen’s SeqCap EZ v3.0, Agilent’s SureSelect v4.0, Illumina’s TruSeq Exome, and Illumina’s Nextera Exome, all applied to the same human tumor DNA sample.ResultsEach capture technology was evaluated for its coverage of different exome databases, target coverage efficiency, GC bias, sensitivity in single nucleotide variant detection, sensitivity in small indel detection, and technical reproducibility. In general, all technologies performed well; however, our data demonstrated small, but consistent differences between the four capture technologies. Illumina technologies cover more bases in coding and untranslated regions. Furthermore, whereas most of the technologies provide reduced coverage in regions with low or high GC content, the Nextera technology tends to bias towards target regions with high GC content.ConclusionsWe show key differences in performance between the four technologies. Our data should help researchers who are planning exome sequencing to select appropriate exome capture technology for their particular application.


PLOS ONE | 2013

Deep Sequencing the MicroRNA Transcriptome in Colorectal Cancer

Kristina Schee; Susanne Lorenz; Merete Molton Worren; Clara Cecilie Günther; Marit Holden; Eivind Hovig; Øystein Fodstad; Leonardo A. Meza-Zepeda; Kjersti Flatmark

Colorectal cancer (CRC) is one of the leading causes of cancer related deaths and the search for prognostic biomarkers that might improve treatment decisions is warranted. MicroRNAs (miRNAs) are short non-coding RNA molecules involved in regulating gene expression and have been proposed as possible biomarkers in CRC. In order to characterize the miRNA transcriptome, a large cohort including 88 CRC tumors with long-term follow-up was deep sequenced. 523 mature miRNAs were expressed in our cohort, and they exhibited largely uniform expression patterns across tumor samples. Few associations were found between clinical parameters and miRNA expression, among them, low expression of miR-592 and high expression of miR-10b-5p and miR-615-3p were associated with tumors located in the right colon relative to the left colon and rectum. High expression of miR-615-3p was also associated with poorly differentiated tumors. No prognostic biomarker candidates for overall and metastasis-free survival were identified by applying the LASSO method in a Cox proportional hazards model or univariate Cox. Examination of the five most abundantly expressed miRNAs in the cohort (miR-10a-5p, miR-21-5p, miR-22-3p, miR-143-3p and miR-192-5p) revealed that their collective expression represented 54% of the detected miRNA sequences. Pathway analysis of the target genes regulated by the five most highly expressed miRNAs uncovered a significant number of genes involved in the CRC pathway, including APC, TGFβ and PI3K, thus suggesting that these miRNAs are relevant in CRC.


Lancet Oncology | 2016

Monogenic and polygenic determinants of sarcoma risk: an international genetic study

Mandy L. Ballinger; David L. Goode; Isabelle Ray-Coquard; Paul A. James; Gillian Mitchell; Eveline Niedermayr; Ajay Puri; Joshua D. Schiffman; Gillian S. Dite; Arcadi Cipponi; Robert G. Maki; Andrew Scott Brohl; Ola Myklebost; Eva W. Stratford; Susanne Lorenz; Sung-Min Ahn; Jin Hee Ahn; Jeong Eun Kim; Sue Shanley; Victoria Beshay; Robert Lor Randall; Ian Judson; Beatrice Seddon; Ian G. Campbell; Mary Anne Young; Rajiv Sarin; Jean Yves Blay; Seán I. O'Donoghue; David Thomas

BACKGROUND Sarcomas are rare, phenotypically heterogeneous cancers that disproportionately affect the young. Outside rare syndromes, the nature, extent, and clinical significance of their genetic origins are not known. We aimed to investigate the genetic basis for bone and soft-tissue sarcoma seen in routine clinical practice. METHODS In this genetic study, we included 1162 patients with sarcoma from four cohorts (the International Sarcoma Kindred Study [ISKS], 966 probands; Project GENESIS, 48 probands; Asan Bio-Resource Center, 138 probands; and kConFab, ten probands), who were older than 15 years at the time of consent and had a histologically confirmed diagnosis of sarcoma, recruited from specialist sarcoma clinics without regard to family history. Detailed clinical, pathological, and pedigree information was collected, and cancer diagnoses in probands and relatives were independently verified. Targeted exon sequencing using blood (n=1114) or saliva (n=48) samples was done on 72 genes (selected due to associations with increased cancer risk) and rare variants were stratified into classes approximating the International Agency for Research on Cancer (IARC) clinical classification for genetic variation. We did a case-control rare variant burden analysis using 6545 Caucasian controls included from three cohorts (ISKS, 235 controls; LifePool, 2010 controls; and National Heart, Lung, and Blood Institute Exome Sequencing Project [ESP], 4300 controls). FINDINGS The median age at cancer diagnosis in 1162 sarcoma probands was 46 years (IQR 29-58), 170 (15%) of 1162 probands had multiple primary cancers, and 155 (17%) of 911 families with informative pedigrees fitted recognisable cancer syndromes. Using a case-control rare variant burden analysis, 638 (55%) of 1162 sarcoma probands bore an excess of pathogenic germline variants (combined odds ratio [OR] 1·43, 95% CI 1·24-1·64, p<0·0001), with 227 known or expected pathogenic variants occurring in 217 individuals. All classes of pathogenic variants (known, expected, or predicted) were associated with earlier age of cancer onset. In addition to TP53, ATM, ATR, and BRCA2, an unexpected excess of functionally pathogenic variants was seen in ERCC2. Probands were more likely than controls to have multiple pathogenic variants compared with the combined control cohort group and the LifePool control cohort (OR 2·22, 95% CI 1·57-3·14, p=1·2 × 10(-6)) and the cumulative burden of multiple variants correlated with earlier age at cancer diagnosis (Mantel-Cox log-rank test for trend, p=0·0032). 66 of 1162 probands carried notifiable variants following expert clinical review (those recognised to be clinically significant to health and about which patients should be advised), whereas 293 (25%) probands carried variants with potential therapeutic significance. INTERPRETATION About half of patients with sarcoma have putatively pathogenic monogenic and polygenic variation in known and novel cancer genes, with implications for risk management and treatment. FUNDING Rainbows for Kate Foundation, Johanna Sewell Research Foundation, Australian National Health and Medical Research Council, Cancer Australia, Sarcoma UK, National Cancer Institute, Liddy Shriver Sarcoma Initiative.


Stem Cells | 2014

The regulatory landscape of osteogenic differentiation.

Anne Mari Håkelien; Jan Christian Bryne; Kristine G. Harstad; Susanne Lorenz; Jonas Paulsen; Jinchang Sun; Tarjei S. Mikkelsen; Ola Myklebost; Leonardo A. Meza-Zepeda

Differentiation of osteoblasts from mesenchymal stem cells (MSCs) is an integral part of bone development and homeostasis, and may when improperly regulated cause disease such as bone cancer or osteoporosis. Using unbiased high‐throughput methods we here characterize the landscape of global changes in gene expression, histone modifications, and DNA methylation upon differentiation of human MSCs to the osteogenic lineage. Furthermore, we provide a first genome‐wide characterization of DNA binding sites of the bone master regulatory transcription factor Runt‐related transcription factor 2 (RUNX2) in human osteoblasts, revealing target genes associated with regulation of proliferation, migration, apoptosis, and with a significant overlap with p53 regulated genes. These findings expand on emerging evidence of a role for RUNX2 in cancer, including bone metastases, and the p53 regulatory network. We further demonstrate that RUNX2 binds to distant regulatory elements, promoters, and with high frequency to gene 3′ ends. Finally, we identify TEAD2 and GTF2I as novel regulators of osteogenesis. Stem Cells 2014;32:2780–2793


Genome Biology | 2015

Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data

Lynnette Fernandez-Cuesta; Ruping Sun; Roopika Menon; Julie George; Susanne Lorenz; Leonardo A. Meza-Zepeda; Martin Peifer; Dennis Plenker; Johannes M. Heuckmann; Frauke Leenders; Thomas Zander; Ilona Dahmen; Mirjam Koker; Jakob Schöttle; Roland T. Ullrich; Janine Altmüller; Christian Becker; Peter Nürnberg; Henrik Seidel; Diana Böhm; Friederike Göke; Sascha Ansén; Prudence A. Russell; Gavin Wright; Zoe Wainer; Benjamin sss Solomon; Iver Petersen; Joachim H. Clement; Jörg Sänger; Odd-Terje Brustugun

Genomic translocation events frequently underlie cancer development through generation of gene fusions with oncogenic properties. Identification of such fusion transcripts by transcriptome sequencing might help to discover new potential therapeutic targets. We developed TRUP (Tumor-specimen suited RNA-seq Unified Pipeline) (https://github.com/ruping/TRUP), a computational approach that combines split-read and read-pair analysis with de novo assembly for the identification of chimeric transcripts in cancer specimens. We apply TRUP to RNA-seq data of different tumor types, and find it to be more sensitive than alternative tools in detecting chimeric transcripts, such as secondary rearrangements in EML4-ALK-positive lung tumors, or recurrent inactivating rearrangements affecting RASSF8.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Cdc28 kinase activity regulates the basal transcription machinery at a subset of genes

Pierre Chymkowitch; Vegard Eldholm; Susanne Lorenz; Christine Zimmermann; Jessica M. Lindvall; Magnar Bjørås; Leonardo A. Meza-Zepeda; Jorrit M. Enserink

The cyclin-dependent kinase Cdc28 is the master regulator of the cell cycle in Saccharomyces cerevisiae. Cdc28 initiates the cell cycle by activating cell-cycle–specific transcription factors that switch on a transcriptional program during late G1 phase. Cdc28 also has a cell-cycle–independent, direct function in regulating basal transcription, which does not require its catalytic activity. However, the exact role of Cdc28 in basal transcription remains poorly understood, and a function for its kinase activity has not been fully explored. Here we show that the catalytic activity of Cdc28 is important for basal transcription. Using a chemical-genetic screen for mutants that specifically require the kinase activity of Cdc28 for viability, we identified a plethora of basal transcription factors. In particular, CDC28 interacts genetically with genes encoding kinases that phosphorylate the C-terminal domain of RNA polymerase II, such as KIN28. ChIP followed by high-throughput sequencing (ChIP-seq) revealed that Cdc28 localizes to at least 200 genes, primarily with functions in cellular homeostasis, such as the plasma membrane proton pump PMA1. Transcription of PMA1 peaks early in the cell cycle, even though the promoter sequences of PMA1 (as well as the other Cdc28-enriched ORFs) lack cell-cycle elements, and PMA1 does not recruit Swi4/6-dependent cell-cycle box-binding factor/MluI cell-cycle box binding factor complexes. Finally, we found that recruitment of Cdc28 and Kin28 to PMA1 is mutually dependent and that the activity of both kinases is required for full phosphorylation of C-terminal domain–Ser5, for efficient transcription, and for mRNA capping. Our results reveal a mechanism of cell-cycle–dependent regulation of basal transcription.


Genome Research | 2015

Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes

Pierre Chymkowitch; P. Aurélie Nguéa; Håvard Aanes; Christian J. Koehler; Bernd Thiede; Susanne Lorenz; Leonardo A. Meza-Zepeda; Arne Klungland; Jorrit M. Enserink

Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs.


Molecular Cancer | 2017

Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes

Marta Rodríguez; Cristina Bajo-Santos; Nina Pettersen Hessvik; Susanne Lorenz; Bastian Fromm; Viktor Berge; Kirsten Sandvig; Aija Linē; Alicia Llorente

The aim of this study was to identify microRNAs in urinary exosomes that are differently expressed in prostate cancer patients and healthy donors. For this purpose, RNA was extracted from urinary exosomes from 20 prostate cancer patients and 9 healthy males and the microRNAs were analyzed by next generation sequencing. Interestingly, 5 microRNAs – miR-196a-5p, miR-34a-5p, miR-143-3p, miR-501-3p and miR-92a-1-5p – were significantly downregulated in exosomes from prostate cancer patients. Furthermore, RT-qPCR analysis of an independent cohort of 28 prostate cancer patients and 19 healthy males confirmed that miR-196a-5p and miR-501-3p were downregulated in prostate cancer samples. These results suggest that specific microRNAs in urinary exosomes might serve as non-invasive biomarkers for prostate cancer. In particular, miR-196a-5p and miR-501-3p are promising biomarkers that need to be further studied in large patient cohorts.


Oncotarget | 2016

Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations

Susanne Lorenz; Tale Barøy; Jinchang Sun; Torfinn Nome; Daniel Vodák; Jan Christian Bryne; Anne Mari Håkelien; Lynnette Fernandez-Cuesta; Birte Möhlendick; Harald Rieder; Karoly Szuhai; Olga Zaikova; Terje Cruickshank Ahlquist; Gard O. S. Thomassen; Rolf I. Skotheim; Ragnhild A. Lothe; Patrick Tarpey; Peter J. Campbell; Adrienne M. Flanagan; Ola Myklebost; Leonardo A. Meza-Zepeda

In contrast to many other sarcoma subtypes, the chaotic karyotypes of osteosarcoma have precluded the identification of pathognomonic translocations. We here report hundreds of genomic rearrangements in osteosarcoma cell lines, showing clear characteristics of microhomology-mediated break-induced replication (MMBIR) and end-joining repair (MMEJ) mechanisms. However, at RNA level, the majority of the fused transcripts did not correspond to genomic rearrangements, suggesting the involvement of trans-splicing, which was further supported by typical trans-splicing characteristics. By combining genomic and transcriptomic analysis, certain recurrent rearrangements were identified and further validated in patient biopsies, including a PMP22-ELOVL5 gene fusion, genomic structural variations affecting RB1, MTAP/CDKN2A and MDM2, and, most frequently, rearrangements involving TP53. Most cell lines (7/11) and a large fraction of tumor samples (10/25) showed TP53 rearrangements, in addition to somatic point mutations (6 patient samples, 1 cell line) and MDM2 amplifications (2 patient samples, 2 cell lines). The resulting inactivation of p53 was demonstrated by a deficiency of the radiation-induced DNA damage response. Thus, TP53 rearrangements are the major mechanism of p53 inactivation in osteosarcoma. Together with active MMBIR and MMEJ, this inactivation probably contributes to the exceptional chromosomal instability in these tumors. Although rampant rearrangements appear to be a phenotype of osteosarcomas, we demonstrate that among the huge number of probable passenger rearrangements, specific recurrent, possibly oncogenic, events are present. For the first time the genomic chaos of osteosarcoma is characterized so thoroughly and delivered new insights in mechanisms involved in osteosarcoma development and may contribute to new diagnostic and therapeutic strategies.


Stem Cells and Development | 2014

Generation and Characterization of an Immortalized Human Mesenchymal Stromal Cell Line

Magne Skårn; Paul Noordhuis; Meng Yu Wang; Marjan J. T. Veuger; Stine H. Kresse; Eivind Valen Egeland; Francesca Micci; Heidi M. Namløs; Anne Mari Håkelien; Solveig Mjelstad Olafsrud; Susanne Lorenz; Guttorm Haraldsen; Gunnar Kvalheim; Leonardo A. Meza-Zepeda; Ola Myklebost

Human mesenchymal stromal cells (hMSCs) show great potential for clinical and experimental use due to their capacity to self-renew and differentiate into multiple mesenchymal lineages. However, disadvantages of primary cultures of hMSCs are the limited in vitro lifespan, and the variable properties of cells from different donors and over time in culture. In this article, we describe the generation of a telomerase-immortalized nontumorigenic human bone marrow-derived stromal mesenchymal cell line, and its detailed characterization after long-term culturing (up to 155 population doublings). The resulting cell line, iMSC#3, maintained a fibroblast-like phenotype comparable to early passages of primary hMSCs, and showed no major differences from hMSCs regarding surface marker expression. Furthermore, iMSC#3 had a normal karyotype, and high-resolution array comparative genomic hybridization confirmed normal copy numbers. The gene expression profiles of immortalized and primary hMSCs were also similar, whereas the corresponding DNA methylation profiles were more diverse. The cells also had proliferation characteristics comparable to primary hMSCs and maintained the capacity to differentiate into osteoblasts and adipocytes. A detailed characterization of the mRNA and microRNA transcriptomes during adipocyte differentiation also showed that the iMSC#3 recapitulates this process at the molecular level. In summary, the immortalized mesenchymal cells represent a valuable model system that can be used for studies of candidate genes and their role in differentiation or oncogenic transformation, and basic studies of mesenchymal biology.

Collaboration


Dive into the Susanne Lorenz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eivind Hovig

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Vodák

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge