Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanne Neupert is active.

Publication


Featured researches published by Susanne Neupert.


Frontiers in Neuroendocrinology | 2008

A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum ☆

Frank Hauser; Giuseppe Cazzamali; Michael Williamson; Yoonseong Park; Bin Li; Yoshiaki Tanaka; Reinhard Predel; Susanne Neupert; Joachim Schachtner; Peter Verleyen; Cornelis J. P. Grimmelikhuijzen

Insect neurohormones (biogenic amines, neuropeptides, and protein hormones) and their G protein-coupled receptors (GPCRs) play a central role in the control of behavior, reproduction, development, feeding and many other physiological processes. The recent completion of several insect genome projects has enabled us to obtain a complete inventory of neurohormone GPCRs in these insects and, by a comparative genomics approach, to analyze the evolution of these proteins. The red flour beetle Tribolium castaneum is the latest addition to the list of insects with a sequenced genome and the first coleopteran (beetle) to be sequenced. Coleoptera is the largest insect order and about 30% of all animal species living on earth are coleopterans. Some coleopterans are severe agricultural pests, which is also true for T. castaneum, a global pest for stored grain and other dried commodities for human consumption. In addition, T. castaneum is a model for insect development. Here, we have investigated the presence of neurohormone GPCRs in Tribolium and compared them with those from the fruit fly Drosophila melanogaster (Diptera) and the honey bee Apis mellifera (Hymenoptera). We found 20 biogenic amine GPCRs in Tribolium (21 in Drosophila; 19 in the honey bee), 48 neuropeptide GPCRs (45 in Drosophila; 35 in the honey bee), and 4 protein hormone GPCRs (4 in Drosophila; 2 in the honey bee). Furthermore, we identified the likely ligands for 45 of these 72 Tribolium GPCRs. A highly interesting finding in Tribolium was the occurrence of a vasopressin GPCR and a vasopressin peptide. So far, the vasopressin/GPCR couple has not been detected in any other insect with a sequenced genome (D. melanogaster and six other Drosophila species, Anopheles gambiae, Aedes aegypti, Bombyx mori, and A. mellifera). Tribolium lives in very dry environments. Vasopressin in mammals is the major neurohormone steering water reabsorption in the kidneys. Its presence in Tribolium, therefore, might be related to the animals need to effectively control water reabsorption. Other striking differences between Tribolium and the other two insects are the absence of the allatostatin-A, kinin, and corazonin neuropeptide/receptor couples and the duplications of other hormonal systems. Our survey of 340 million years of insect neurohormone GPCR evolution shows that neuropeptide/receptor couples can easily duplicate or disappear during insect evolution. It also shows that Drosophila is not a good representative of all insects, because several of the hormonal systems that we now find in Tribolium do not exist in Drosophila.


Cell | 2014

Neonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding

Merly C. Vogt; Lars Paeger; Simon Hess; Sophie M. Steculorum; Motoharu Awazawa; Brigitte Hampel; Susanne Neupert; Hayley T. Nicholls; Jan Mauer; A. Christine Hausen; Reinhard Predel; Peter Kloppenburg; Tamas L. Horvath; Jens C. Brüning

Maternal metabolic homeostasis exerts long-term effects on the offsprings health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP) neurons, electrophysiological properties of POMC neurons, and posttranslational processing of POMC remain unaffected in response to maternal HFD feeding during lactation, the formation of POMC and AgRP projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC neurons of the offspring prevents altered POMC projections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation, and impaired glucose-stimulated insulin secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections, and show that abnormal insulin signaling contributes to this effect.


Journal of Proteome Research | 2011

Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones.

Heinrich Dircksen; Susanne Neupert; Reinhard Predel; Peter Verleyen; Jurgen Huybrechts; Johannes Strauss; Frank Hauser; Elisabeth Stafflinger; Martina Schneider; Kevin Pauwels; Liliane Schoofs; Cornelis J. P. Grimmelikhuijzen

We report 43 novel genes in the water flea Daphnia pulex encoding 73 predicted neuropeptide and protein hormones as partly confirmed by RT-PCR. MALDI-TOF mass spectrometry identified 40 neuropeptides by mass matches and 30 neuropeptides by fragmentation sequencing. Single genes encode adipokinetic hormone, allatostatin-A, allatostatin-B, allatotropin, Ala(7)-CCAP, CCHamide, Arg(7)-corazonin, DENamides, CRF-like (DH52) and calcitonin-like (DH31) diuretic hormones, two ecdysis-triggering hormones, two FIRFamides, one insulin, two alternative splice forms of ion transport peptide (ITP), myosuppressin, neuroparsin, two neuropeptide-F splice forms, three periviscerokinins (but no pyrokinins), pigment dispersing hormone, proctolin, Met(4)-proctolin, short neuropeptide-F, three RYamides, SIFamide, two sulfakinins, and three tachykinins. There are two genes for a preprohormone containing orcomyotropin-like peptides and orcokinins, two genes for N-terminally elongated ITPs, two genes (clustered) for eclosion hormones, two genes (clustered) for bursicons alpha, beta, and two genes (clustered) for glycoproteins GPA2, GPB5, three genes for different allatostatins-C (two of them clustered) and three genes for IGF-related peptides. Detailed comparisons of genes or their products with those from insects and decapod crustaceans revealed that the D. pulex peptides are often closer related to their insect than to their decapod crustacean homologues, confirming that branchiopods, to which Daphnia belongs, are the ancestor group of insects.


Journal of Proteome Research | 2010

Genomics and Peptidomics of Neuropeptides and Protein Hormones Present in the Parasitic Wasp Nasonia vitripennis

Frank Hauser; Susanne Neupert; Michael Williamson; Reinhard Predel; Yoshiaki Tanaka; Cornelis J. P. Grimmelikhuijzen

Neuropeptides and protein hormones constitute a very important group of signaling molecules, regulating central physiological processes such as reproduction, development, and behavior. Using a bioinformatics approach, we screened the recently sequenced genome of the parasitic wasp, Nasonia vitripennis, for the presence of these signaling molecules and annotated 30 precursor genes encoding 51 different mature neuropeptides or protein hormones. Twenty-four of the predicted mature Nasonia neuropeptides could be experimentally confirmed by mass spectrometry. We also discovered a completely novel neuropeptide gene in Nasonia, coding for peptides containing the C-terminal sequence RYamide. This gene has orthologs in nearly all arthropods with a sequenced genome, and its expression in mosquitoes was confirmed by mass spectrometry. No precursor could be identified for N-terminally extended FMRFamides, even though their putative G protein coupled receptor (GPCR) is present in the Nasonia genome. Neither the precursor nor the putative receptor could be identified for allatostatin-B, capa, the glycoprotein hormones GPA2/GPB5, kinin, proctolin, sex peptide, and sulfakinin, arguing that these signaling systems are truly absent in the wasp. Also, antidiuretic factors, allatotropin, and NPLP-like precursors are missing in Nasonia, but here the receptors have not been identified in any insect, so far. Nasonia (Hymenoptera) has the lowest number of neuropeptide precursor genes compared to Drosophila melanogaster, Aedes aegypti (both Diptera), Bombyx mori (Lepidoptera), Tribolium castaneum (Coleoptera), Apis mellifera (Hymenoptera), and Acyrthosiphon pisum (Hemiptera). This lower number of neuropeptide genes might be related to Nasonias parasitic life.


Journal of Proteome Research | 2010

Neuropeptidomics of the mosquito Aedes aegypti

Reinhard Predel; Susanne Neupert; Stephen F. Garczynski; Joe W. Crim; Mark R. Brown; William K. Russell; Joerg Kahnt; David H. Russell; Ronald J. Nachman

Neuropeptidomic data were collected on the mosquito Ae. aegypti, which is considered the most tractable mosquito species for physiological and endocrine studies. The data were solely obtained by direct mass spectrometric profiling, including tandem fragmentation, of selected tissues from single specimens, which yielded a largely complete accounting of the putative bioactive neuropeptides; truncated neuropeptides with low abundance were not counted as mature peptides. Differential processing within the CNS was detected for the CAPA-precursor, and differential post-translational processing (pyroglutamate formation) was detected for AST-C and CAPA-PVK-2. For the first time in insects, we succeeded in the direct mass spectrometric profiling of midgut tissue which yielded a comprehensive and immediate overview of the peptides involved in the endocrine system of the gut. Head peptides which were earlier identified as the most abundant RFamides of Ae. aegypti, were not detected in any part of the CNS or midgut. This study provides a framework for future investigations on mosquito endocrinology and neurobiology. Given the high sequence similarity of neuropeptide precursors identified in other medically important mosquitoes, conclusions regarding the peptidome of Ae. aegypti likely are applicable to these mosquitoes.


European Journal of Neuroscience | 2004

Unique accumulation of neuropeptides in an insect: FMRFamide-related peptides in the cockroach, Periplaneta americana

Reinhard Predel; Susanne Neupert; D. Wicher; M. Gundel; Steffen Roth; Christian Derst

FMRFamides belong to the most extensively studied neuropeptides in invertebrates and exhibit diverse physiological effects on different target organs, such as muscles, intestine and the nervous system. This study on the American cockroach confirms for the first time that extended FMRFamides occur in non‐dipteran insects. By means of tandem mass spectrometry, these neuropeptides were structurally elucidated, and sequence information was used for subsequent cloning of the cockroach FMRFamide gene. This precursor gene encodes for 24 putative peptides and shows sufficient similarity with the Drosophila FMRFamide gene. Of the 24 peptides, 23 were detected by mass spectrometric methods; it is the highest number of neuropeptide forms shown to be expressed from a single precursor in any insect. The expression was traced back to single neurons in the thoracic ganglia. The unique accumulation of these FMRFamide‐related peptides in thoracic perisympathetic organs provides the definite evidence for a tagma‐specific distribution of peptidergic neurohormones in neurohaemal release sites of the insect CNS. Excitatory effects of the cockroach FMRFamides were observed on antenna–heart preparations. In addition, the newly described FMRFamides reduce the spike frequency of dorsal‐unpaired median neurons and reduce the intracellular calcium concentration, which may affect the peripheral release of the biogenic amine octopamine.


Peptides | 2007

Corazonin in insects

Reinhard Predel; Susanne Neupert; William K. Russell; Olaf Scheibner; Ronald J. Nachman

Corazonin is a peptidergic neurohormone of insects that is expressed in neurosecretory neurons of the pars lateralis of the protocerebrum and transported via nervi corporis cardiaci to the storage lobes of the corpora cardiaca. This peptide occurs with a single isoform in all insects studied so far, with the exception of the Coleoptera in which no corazonin form could be detected. Very few modifications of [Arg(7)]-corazonin, originally isolated from cockroaches, are known, namely [His(7)]-corazonin which is expressed in certain locusts and the stick insect Carausius morosus, and [Thr(4), His(7)]-corazonin recently described from the honey bee Apis mellifera. In this study, we performed a comprehensive screening for corazonin in the different insect groups after detecting of a fourth isoform in a crane fly, Tipula sp. ([Gln(10)]-corazonin). [Arg(7)]-corazonin is distributed in most major lineages of insects, and is thus the ancient form which was present at the time the phylum Insecta evolved. The replacement of Arg with His at position 7 from the N-terminus occurred several times in the evolution of insects. The third isoform, [Thr(4), His(7)]-corazonin, seems to be restricted to bees (Apidae); whereas wasps (Vespidae) and a bumble bee (Apidae) express other corazonins, specifically [His(7)]-corazonin and [Tyr(3), Gln(7), Gln(10)]-corazonin, respectively. A novel corazonin form, [His(4), Gln(7)]-corazonin, was also detected in all South African members of the newly described insect order Mantophasmatodea. The [His(4), Gln(7)]-corazonin separates these species from the Namibian Mantophasmatodea which express [Arg(7)]-corazonin and can be used as a distinct character to distinguish these morphologically similar insects.


Journal of Proteomics | 2009

The neuropeptidomics of Ixodes scapularis synganglion

Susanne Neupert; William K. Russell; Reinhard Predel; David H. Russell; Otto F. Strey; Pete D. Teel; Ronald J. Nachman

Ticks (Ixodoidea) likely transmit the greatest variety of human and animal pathogens of any arthropod vector. Despite their medical significance little data is available about the messenger molecules in the central nervous system that coordinate all physiological processes in these animals, including behaviour. In our study, we performed the first comprehensive neuropeptidomic analysis of a tick species by using MALDI-TOF mass spectrometry. Specifically we analyzed the neuropeptides in the synganglion of Ixodes scapularis. The forthcoming sequence of the genome of this species will represent the first genomic analysis of a member of the large subphylum Chelicerata. For our approach we used information from predicted neuropeptide precursor sequences found in EST databases [Christie, AE. Neuropeptide discovery in Ixodoidea: an in silico investigation using publicly accessible expressed sequence tags. Gen Comp Endocrinol 2008;157:174-185] as well as data obtained by complete de novo sequencing. The direct tissue profiling yielded 20 neuropeptides from 12 neuropeptide precursors. The sequences of these neuropeptides are not as unique as predicted; a comparison with the peptidome of other invertebrates shows a close relationship with insect neuropeptides. This work will provide a resource for studying tick neurobiology and will hopefully also help to identify novel targets for tick and tick-borne disease control.


The Journal of Comparative Neurology | 2014

Neuropeptides in the antennal lobe of the Yellow fever mosquito, Aedes aegypti

K.P. Siju; Anna Reifenrath; Hannah Scheiblich; Susanne Neupert; Reinhard Predel; Bill S. Hansson; Joachim Schachtner; Rickard Ignell

For many insects, including mosquitoes, olfaction is the dominant modality regulating their behavioral repertoire. Many neurochemicals modulate olfactory information in the central nervous system, including the primary olfactory center of insects, the antennal lobe. The most diverse and versatile neurochemicals in the insect nervous system are found in the neuropeptides. In the present study, we analyzed neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti, a major vector of arboviral diseases. Direct tissue profiling of the antennal lobe by matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectrometry indicated the presence of 28 mature products from 10 different neuropeptide genes. In addition, immunocytochemical techniques were used to describe the cellular location of the products of up to seven of these genes within the antennal lobe. Allatostatin A, allatotropin, SIFamide, FMRFamide‐related peptides, short neuropeptide F, myoinhibitory peptide, and tachykinin‐related peptides were found to be expressed in local interneurons and extrinsic neurons of the antennal lobe. Building on these results, we discuss the possible role of neuropeptide signaling in the antennal lobe of Ae. aegypti. J. Comp. Neurol. 522:592–608, 2014.


FEBS Journal | 2005

Tachykinin‐related peptide precursors in two cockroach species

Reinhard Predel; Susanne Neupert; Steffen Roth; Christian Derst; Dick R. Nässel

Tachykinins and tachykinin‐related peptides (TKRPs) play major roles in signaling in the nervous system and intestine of both invertebrates and vertebrates. Here we have identified cDNAs encoding precursors of multiple TKRPs from the cockroaches Leucophaea maderae and Periplaneta americana. All nine LemTKRPs that had been chemically isolated in earlier experiments could be identified on the precursor of L. maderae. Four previously unidentified LemTKRPs were found in addition on the precursor. The P. americana cDNA displayed an open reading frame very similar to that of L. maderae with 13 different TKRPs. MALDI‐TOF mass spectra from tissues of both species confirms the presence of all the TKRPs encoded on the precursor plus two additional peptides that are cleavage products of the N‐terminally extended TKRPs. A tissue‐specific distribution of TKRPs was observed in earlier experiments at isolation from brain and midgut of L. maderae. Our data do not suggest a differential gene expression but a different efficacy in processing of LemTKRP‐2 and Lem/PeaTKRP‐3 in the brain and intestine, respectively. This results in a gut‐specific accumulation of these extended peptides, whereas in the brain their cleavage products, LemTKRP‐1 and LemTKRP‐311−19, are most abundant. Mass spectrometric analysis demonstrated the occurrence of the different TKRPs in single glomeruli of the tritocerebrum and in cells of the optical lobe.

Collaboration


Dive into the Susanne Neupert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald J. Nachman

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Hauser

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge