Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanne Schneiker is active.

Publication


Featured researches published by Susanne Schneiker.


Nature Biotechnology | 2007

Complete genome sequence of the myxobacterium Sorangium cellulosum.

Susanne Schneiker; Olena Perlova; Olaf Kaiser; Klaus Gerth; Aysel Alici; Matthias O. Altmeyer; Daniela Bartels; Thomas Bekel; Stefan Beyer; Edna Bode; Helge B. Bode; Christoph J. Bolten; Jomuna V. Choudhuri; Sabrina Doss; Yasser A. Elnakady; Bettina Frank; Lars Gaigalat; Alexander Goesmann; Carolin Groeger; Frank Gross; Lars Jelsbak; Lotte Jelsbak; Jörn Kalinowski; Carsten Kegler; Tina Knauber; Sebastian Konietzny; Maren Kopp; Lutz Krause; Daniel Krug; Bukhard Linke

The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum So ce56, which produces several natural products and has morphological and physiological properties typical of the genus. The circular genome, comprising 13,033,779 base pairs, is the largest bacterial genome sequenced to date. No global synteny with the genome of Myxococcus xanthus is apparent, revealing an unanticipated level of divergence between these myxobacteria. A large percentage of the genome is devoted to regulation, particularly post-translational phosphorylation, which probably supports the strains complex, social lifestyle. This regulatory network includes the highest number of eukaryotic protein kinase–like kinases discovered in any organism. Seventeen secondary metabolite loci are encoded in the genome, as well as many enzymes with potential utility in industry.


Journal of Bacteriology | 2005

Insights into Genome Plasticity and Pathogenicity of the Plant Pathogenic Bacterium Xanthomonas campestris pv. vesicatoria Revealed by the Complete Genome Sequence

Frank Thieme; Ralf Koebnik; Thomas Bekel; Carolin Berger; Jens Boch; Daniela Büttner; Camila Caldana; Lars Gaigalat; Alexander Goesmann; Sabine Kay; Oliver Kirchner; Christa Lanz; Burkhard Linke; Alice C. McHardy; Folker Meyer; Gerhard Mittenhuber; Dietrich H. Nies; Ulla Niesbach-Klösgen; Thomas Patschkowski; Christian Rückert; Oliver Rupp; Susanne Schneiker; Stephan C. Schuster; Frank-Jörg Vorhölter; Ernst Weber; Alfred Pühler; Ulla Bonas; Daniela Bartels; Olaf Kaiser

The gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is the causative agent of bacterial spot disease in pepper and tomato plants, which leads to economically important yield losses. This pathosystem has become a well-established model for studying bacterial infection strategies. Here, we present the whole-genome sequence of the pepper-pathogenic Xanthomonas campestris pv. vesicatoria strain 85-10, which comprises a 5.17-Mb circular chromosome and four plasmids. The genome has a high G+C content (64.75%) and signatures of extensive genome plasticity. Whole-genome comparisons revealed a gene order similar to both Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris and a structure completely different from Xanthomonas oryzae pv. oryzae. A total of 548 coding sequences (12.2%) are unique to X. campestris pv. vesicatoria. In addition to a type III secretion system, which is essential for pathogenicity, the genome of strain 85-10 encodes all other types of protein secretion systems described so far in gram-negative bacteria. Remarkably, one of the putative type IV secretion systems encoded on the largest plasmid is similar to the Icm/Dot systems of the human pathogens Legionella pneumophila and Coxiella burnetii. Comparisons with other completely sequenced plant pathogens predicted six novel type III effector proteins and several other virulence factors, including adhesins, cell wall-degrading enzymes, and extracellular polysaccharides.


Nature Biotechnology | 2006

Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis

Susanne Schneiker; Vitor A. P. Martins dos Santos; Daniela Bartels; Thomas Bekel; Martina Brecht; Jens Buhrmester; Tatyana N. Chernikova; Renata Denaro; Manuel Ferrer; Christoph Gertler; Alexander Goesmann; Olga V. Golyshina; Filip Kaminski; Amit N. Khachane; Siegmund Lang; Burkhard Linke; Alice C. McHardy; Folker Meyer; Taras Y. Nechitaylo; Alfred Pühler; Daniela Regenhardt; Oliver Rupp; Julia Sabirova; Werner Selbitschka; Michail M. Yakimov; Kenneth N. Timmis; Frank-Jörg Vorhölter; Stefan Weidner; Olaf Kaiser; Peter N. Golyshin

Alcanivorax borkumensis is a cosmopolitan marine bacterium that uses oil hydrocarbons as its exclusive source of carbon and energy. Although barely detectable in unpolluted environments, A. borkumensis becomes the dominant microbe in oil-polluted waters. A. borkumensis SK2 has a streamlined genome with a paucity of mobile genetic elements and energy generation–related genes, but with a plethora of genes accounting for its wide hydrocarbon substrate range and efficient oil-degradation capabilities. The genome further specifies systems for scavenging of nutrients, particularly organic and inorganic nitrogen and oligo-elements, biofilm formation at the oil-water interface, biosurfactant production and niche-specific stress responses. The unique combination of these features provides A. borkumensis SK2 with a competitive edge in oil-polluted environments. This genome sequence provides the basis for the future design of strategies to mitigate the ecological damage caused by oil spills.


Journal of Biotechnology | 2008

The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis

Frank-Jörg Vorhölter; Susanne Schneiker; Alexander Goesmann; Lutz Krause; Thomas Bekel; Olaf Kaiser; Burkhard Linke; Thomas Patschkowski; Christian Rückert; Joachim Schmid; Vishaldeep Kaur Sidhu; Volker Sieber; Andreas Tauch; Steven Alexander Watt; Bernd Weisshaar; Anke Becker; Karsten Niehaus; Alfred Pühler

The complete genome sequence of the Xanthomonas campestris pv. campestris strain B100 was established. It consisted of a chromosome of 5,079,003bp, with 4471 protein-coding genes and 62 RNA genes. Comparative genomics showed that the genes required for the synthesis of xanthan and xanthan precursors were highly conserved among three sequenced X. campestris pv. campestris genomes, but differed noticeably when compared to the remaining four Xanthomonas genomes available. For the xanthan biosynthesis genes gumB and gumK earlier translational starts were proposed, while gumI and gumL turned out to be unique with no homologues beyond the Xanthomonas genomes sequenced. From the genomic data the biosynthesis pathways for the production of the exopolysaccharide xanthan could be elucidated. The first step of this process is the uptake of sugars serving as carbon and energy sources wherefore genes for 15 carbohydrate import systems could be identified. Metabolic pathways playing a role for xanthan biosynthesis could be deduced from the annotated genome. These reconstructed pathways concerned the storage and metabolization of the imported sugars. The recognized sugar utilization pathways included the Entner-Doudoroff and the pentose phosphate pathway as well as the Embden-Meyerhof pathway (glycolysis). The reconstruction indicated that the nucleotide sugar precursors for xanthan can be converted from intermediates of the pentose phosphate pathway, some of which are also intermediates of glycolysis or the Entner-Doudoroff pathway. Xanthan biosynthesis requires in particular the nucleotide sugars UDP-glucose, UDP-glucuronate, and GDP-mannose, from which xanthan repeat units are built under the control of the gum genes. The updated genome annotation data allowed reconsidering and refining the mechanistic model for xanthan biosynthesis.


Journal of Bacteriology | 2008

The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity

Karl-Heinz Gartemann; Birte Abt; Thomas Bekel; Annette Burger; Jutta Engemann; Monika Flügel; Lars Gaigalat; Alexander Goesmann; Ines Gräfen; Jörn Kalinowski; Olaf Kaup; Oliver Kirchner; Lutz Krause; Burkhard Linke; Alice C. McHardy; Folker Meyer; Sandra Pohle; Christian Rückert; Susanne Schneiker; Eva-Maria Zellermann; Alfred Pühler; Rudolf Eichenlaub; Olaf Kaiser; Daniela Bartels

Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil.


Microbiology | 2002

The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere

Andreas Tauch; Susanne Schneiker; Werner Selbitschka; Alfred Pühler; Leo S. van Overbeek; Kornelia Smalla; Christopher M. Thomas; Mark J. Bailey; Larry J. Forney; Andrew J. Weightman; Piotr Cegłowski; Tony J. Pembroke; Erhard Tietze; Gunnar F. Schröder; Erich Lanka; Jan Dirk van Elsas

Plasmid pIPO2 is a cryptic, conjugative, broad-host-range plasmid isolated from the wheat rhizosphere. It efficiently self-transfers between alpha, beta and gamma Proteobacteria and has a mobilizing/retromobilizing capacity for IncQ plasmids. The complete nucleotide sequence of pIPO2 is presented on the basis of its mini-Tn5::luxABtet-tagged derivative, pIPO2T. The pIPO2 sequence is 39815 bp long and contains at least 43 complete ORFs. Apart from a suite of ORFs with unknown function, all of the genes carried on pIPO2 are predicted to be involved in plasmid replication, maintenance and conjugative transfer. The overall organization of these genes is different from previously described plasmids, but is similar to the genetic organization seen in pSB102, a conjugative plasmid recently isolated from the bacterial community of the alfalfa rhizosphere. The putative conjugative transfer region of pIPO2 covers 23 kb and contains the genes required for DNA processing (Dtr) and mating pair formation (Mpf). The organization of these transfer genes in pIPO2 is highly similar to the genetic organization seen in the environmental plasmid pSB102 and in pXF51 from the plant pathogen Xylella fastidiosa. Plasmids pSB102 and pXF51 have recently been proposed to form a new family of environmental broad-host-range plasmids. Here it is suggested that pIPO2 is a new member of this family. The proposed Mpf system of pIPO2 shares high amino acid sequence similarity with equivalent VirB proteins from the type IV secretion system of Brucella spp. Sequence information was used to design primers specific for the detection of pIPO2. Environmental DNA from a range of diverse habitats was screened by PCR with these primers. Consistently positive signals for the presence of pIPO2 were obtained from a range of soil-related habitats, including the rhizospheres of young wheat plants, of field-grown oats and of grass (all gramineous plants), as well as from the rhizosphere of tomato plants. These data add to the growing evidence that plasmids carry advantageous genes with as yet undefined functions in plant-associated communities.


Journal of Biotechnology | 2008

The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing

Andreas Tauch; Eva Trost; Alexandra Tilker; Ulrike Ludewig; Susanne Schneiker; Alexander Goesmann; Walter Arnold; Thomas Bekel; Karina Brinkrolf; Iris Brune; Susanne Götker; Jörn Kalinowski; Paul-Bertram Kamp; Francisco P. Lobo; Bernd Weisshaar; Francisco Soriano; Marcus Dröge; Alfred Pühler

Corynebacterium urealyticum is a lipid-requiring, urealytic bacterium of the human skin flora that has been recognized as causative agent of urinary tract infections. We report the analysis of the complete genome sequence of C. urealyticum DSM7109, which was initially recovered from a patient with alkaline-encrusted cystitis. The genome sequence was determined by a combination of pyrosequencing and Sanger technology. The chromosome of C. urealyticum DSM7109 has a size of 2,369,219bp and contains 2024 predicted coding sequences, of which 78% were considered as orthologous with genes in the Corynebacterium jeikeium K411 genome. Metabolic analysis of the lipid-requiring phenotype revealed the absence of a fatty acid synthase gene and the presence of a beta-oxidation pathway along with a large repertoire of auxillary genes for the degradation of exogenous fatty acids. A urease locus with the gene order ureABCEFGD may play a pivotal role in virulence of C. urealyticum by the alkalinization of human urine and the formation of struvite stones. Multidrug resistance of C. urealyticum DSM7109 is mediated by transposable elements, conferring resistances to macrolides, lincosamides, ketolides, aminoglycosides, chloramphenicol, and tetracycline. The complete genome sequence of C. urealyticum revealed a detailed picture of the lifestyle of this opportunistic human pathogen.


Applied and Environmental Microbiology | 2006

Sequence Analysis of the 144-Kilobase Accessory Plasmid pSmeSM11a, Isolated from a Dominant Sinorhizobium meliloti Strain Identified during a Long-Term Field Release Experiment

Michael Stiens; Susanne Schneiker; M. Keller; S. Kuhn; Alfred Pühler; Andreas Schlüter

ABSTRACT The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.


Applied and Environmental Microbiology | 2007

Erythromycin Resistance-Conferring Plasmid pRSB105, Isolated from a Sewage Treatment Plant, Harbors a New Macrolide Resistance Determinant, an Integron-Containing Tn402-Like Element, and a Large Region of Unknown Function

Andreas Schlüter; Rafael Szczepanowski; N. Kurz; Susanne Schneiker; Irene Krahn; Alfred Pühler

ABSTRACT The erythromycin resistance plasmid pRSB105 was previously isolated from an activated sludge bacterial community of a municipal wastewater treatment plant. Compilation of the complete pRSB105 nucleotide sequence revealed that the plasmid is 57,137 bp in size and has a mean G+C content of 56.66 mol%. The pRSB105 backbone is composed of two different replication and/or partitioning modules and a functional mobilization region encoding the mobilization genes mobCDE and mobBA. The first replicon (Rep1) is nearly identical to the corresponding replication module of the multiresistance plasmid pRSB101 isolated from an unknown activated sludge bacterium. Accordingly, pRSB101 and pRSB105 are sister plasmids belonging to a new plasmid family. The second replicon (Rep2) of pRSB105 was classified as a member of the IncP-6 group. While Rep1 confers replication ability only in γ-proteobacteria, Rep2 extents the host range of the plasmid since it is also functional in the β-proteobacterium Ralstonia eutropha. Plasmid pRSB105 harbors the macrolide resistance genes mel and mph, encoding, respectively, a predicted ABC-type efflux permease and a macrolide-2′-phosphotransferase. Erythromycin resistance is mainly attributed to mel, whereas mph contributes to erythromycin resistance to a lesser extent. The second resistance region, represented by an integron-containing Tn402-like element, includes a β-lactam (oxa10) and a trimethoprim (dfrB2) resistance gene cassette. In addition to antibiotic resistance modules, pRSB105 encodes a functional restriction/modification system and two nonresistance regions of unknown function. The presence of different mobile genetic elements that flank resistance and nonresistance modules on pRSB105 indicates that these elements were involved in acquisition of accessory plasmid modules. Comparative genomics of pRSB105 and related plasmids elucidated that pRSB105 evolved by integration of distinct modules from different plasmid sources, including Pseudomonas aeruginosa plasmids, and thus represents a mosaic plasmid.


Applied and Environmental Microbiology | 2007

IncP-1β Plasmid pGNB1 Isolated from a Bacterial Community from a Wastewater Treatment Plant Mediates Decolorization of Triphenylmethane Dyes

Andreas Schlüter; Irene Krahn; Florian Kollin; Gabriele Bönemann; Michael Stiens; Rafael Szczepanowski; Susanne Schneiker; Alfred Pühler

ABSTRACT Plasmid pGNB1 was isolated from bacteria residing in the activated sludge compartment of a wastewater treatment plant by using a transformation-based approach. This 60-kb plasmid confers resistance to the triphenylmethane dye crystal violet and enables its host bacterium to decolorize crystal violet. Partial sequencing of pGNB1 revealed that its backbone is very similar to that of previously sequenced IncP-1β plasmids. The two accessory regions of the plasmid, one located downstream of the replication initiation gene trfA and the other located between the conjugative transfer modules Tra and Trb, were completely sequenced. Accessory region L1 contains a transposon related to Tn5501 and a gene encoding a Cupin 2 conserved barrel protein with an unknown function. The triphenylmethane reductase gene tmr and a truncated dihydrolipoamide dehydrogenase gene that is flanked by IS1071 and another putative insertion element were identified in accessory region L2. Subcloning of the pGNB1 tmr gene demonstrated that this gene is responsible for the observed crystal violet resistance phenotype and mediates decolorization of the triphenylmethane dyes crystal violet, malachite green, and basic fuchsin. Plasmid pGNB1 and the associated phenotype are transferable to the α-proteobacterium Sinorhizobium meliloti and the γ-proteobacterium Escherichia coli. This is the first report of a promiscuous IncP-1β plasmid isolated from the bacterial community from a wastewater treatment plant that harbors a triphenylmethane reductase gene. The pGNB1-encoded enzyme activity is discussed with respect to bioremediation of sewage polluted with triphenylmethane dyes.

Collaboration


Dive into the Susanne Schneiker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lutz Krause

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge