Susanne Schröder
German Aerospace Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susanne Schröder.
Journal of Geophysical Research | 2014
M. Nachon; Samuel Michael Clegg; N. Mangold; Susanne Schröder; L. C. Kah; Gilles Dromart; A. M. Ollila; Jeffrey R. Johnson; D. Z. Oehler; John C. Bridges; S. Le Mouélic; O. Forni; Roger C. Wiens; R. B. Anderson; Diana L. Blaney; James F. Bell; B. C. Clark; A. Cousin; M. D. Dyar; Bethany L. Ehlmann; C. Fabre; O. Gasnault; John P. Grotzinger; J. Lasue; E. Lewin; R. Leveille; Scott M. McLennan; Sylvestre Maurice; P.-Y. Meslin; W. Rapin
The Curiosity rover has analyzed abundant light-toned fracture-fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire similar to 5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur-rich fluids may have originated in previously precipitated sulfate-rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions.
Science | 2015
S. Mottola; Gabriele Arnold; H.-G. Grothues; R. Jaumann; Harald Michaelis; Gerhard Neukum; J.-P. Bibring; Susanne Schröder; M. Hamm; Katharina A. Otto; Ivanka Pelivan; G. Proffe; Frank Scholten; Daniela Tirsch; M. A. Kreslavsky; E. Remetean; F. Souvannavong; B. Dolives
The structure of the upper layer of a comet is a product of its surface activity. The Rosetta Lander Imaging System (ROLIS) on board Philae acquired close-range images of the Agilkia site during its descent onto comet 67P/Churyumov-Gerasimenko. These images reveal a photometrically uniform surface covered by regolith composed of debris and blocks ranging in size from centimeters to 5 meters. At the highest resolution of 1 centimeter per pixel, the surface appears granular, with no apparent deposits of unresolved sand-sized particles. The thickness of the regolith varies across the imaged field from 0 to 1 to 2 meters. The presence of aeolian-like features resembling wind tails hints at regolith mobilization and erosion processes. Modeling suggests that abrasion driven by airfall-induced particle “splashing” is responsible for the observed formations.
Planetary and Space Science | 2013
Susanne Schröder; S. Mottola; H. U. Keller; C.A. Raymond; C. T. Russell
During its year-long orbital mission, the Dawn spacecraft has mapped the surface of main-belt asteroid Vesta multiple times at different spatial resolutions and illumination and viewing angles. The onboard Framing Camera has acquired thousands of clear filter and narrow band images, which, with the availability of high-resolution global shape models, allows for a photometric characterization of the surface in unprecedented detail. We analyze clear filter images to retrieve the photometric properties of the regolith. In the first part of the paper we evaluate different photometric models for the global average. In the second part we use these results to study variations in albedo and steepness of the phase curve over the surface. Maps of these two photometric parameters show large scale albedo variations, which appear to be associated with compositional differences. They also reveal the location of photometrically extreme terrains, where the phase curve is unusually shallow or steep. We find that shallow phase curves are associated with steep slopes on crater walls and faults, as calculated from a shape model. On the other hand, the phase curve of ejecta associated with young impact craters is steep. We interpret these variations in phase curve slope in terms of physical roughness of the regolith. The lack of rough ejecta around older craters suggests that initially rough ejecta associated with impact craters on Vesta are smoothed over a relatively short time of several tens of Myr. We propose that this process is the result of impact gardening, and as such represents a previously unrecognized aspect of Vesta space weathering (Pieters et al., 2012). If this type of space weathering is common, we may expect to encounter this photometric phenomenon on other main belt asteroids.
Journal of Geophysical Research | 2017
Bethany L. Ehlmann; Kenneth S. Edgett; Brad Sutter; C. N. Achilles; M. L. Litvak; Mathieu G.A. Lapotre; R. Sullivan; A. A. Fraeman; Raymond E. Arvidson; David F. Blake; Nathan T. Bridges; P. G. Conrad; A. Cousin; Robert T. Downs; T. S. J. Gabriel; R. Gellert; Victoria E. Hamilton; Craig Hardgrove; Jeffrey R. Johnson; S. R. Kuhn; Paul R. Mahaffy; Sylvestre Maurice; M. McHenry; P.-Y. Meslin; D. W. Ming; M. E. Minitti; J. M. Morookian; Richard V. Morris; C. D. O'Connell‐Cooper; P. C. Pinet
Abstract The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45–500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust‐covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt‐sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse‐sieved fraction of Bagnold sands, corroborated by visible/near‐infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand‐sized fraction (represented by Bagnold) that are Si‐enriched, hydroxylated alteration products and/or H2O‐ or OH‐bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Journal of Geophysical Research | 2016
L. Le Deit; N. Mangold; O. Forni; A. Cousin; J. Lasue; Susanne Schröder; Roger C. Wiens; Dawn Y. Sumner; C. Fabre; Kathryn M. Stack; R. B. Anderson; Diana L. Blaney; S. M. Clegg; Gilles Dromart; Martin R. Fisk; O. Gasnault; John P. Grotzinger; Sanjeev Gupta; N. Lanza; S. Le Mouélic; S. Maurice; Scott M. McLennan; P.-Y. Meslin; M. Nachon; H. Newsom; V. Payré; W. Rapin; Melissa S. Rice; Violaine Sautter; Allan H. Treiman
Key Points: • Mean K2O abundance in sedimentary rocks >5 times higher than that of the average Martian crust • Presence of alkali feldspars and K-phyllosilicates in basaltic sedimentary rocks along the traverse • The K-bearing minerals likely have a detrital origin
Geophysical Research Letters | 2016
Katrin Krohn; R. Jaumann; K. Stephan; Katharina A. Otto; N. Schmedemann; Roland Wagner; Klaus-Dieter Matz; F. Tosi; F. Zambon; I. von der Gathen; Franziska Schulzeck; Susanne Schröder; D.L. Buczkowski; Harald Hiesinger; Harry Y. McSween; Carle M. Pieters; Frank Preusker; Thomas Roatsch; C.A. Raymond; C. T. Russell; David A. Williams
Craters on Ceres, such as Haulani, Kupalo, Ikapati, and Occator show postimpact modification by the deposition of extended plains material with pits, multiple lobate flows, and widely dispersed deposits that form a diffuse veneer on the preexisting surface. Bright material units in these features have a negative spectral slope in the visible range, making it appear bluish with respect to the grey-toned overall surface of Ceres. We calculate the drop height-to-runout length ratio of several flow features and obtain a coefficient of friction of <0.1: The results imply higher flow efficiency for flow features on Ceres than for similar features on other planetary bodies with similar gravity, suggesting low-viscosity material. The special association of flow features with impact craters could either point to an impact melt origin or to an exogenic triggering of cryovolcanic processes.
Geophysical Research Letters | 2014
M. T. Capria; F. Tosi; M.C. De Sanctis; F. Capaccioni; E. Ammannito; A. Frigeri; F. Zambon; S. Fonte; E. Palomba; D. Turrini; Timothy N. Titus; Susanne Schröder; Michael J. Toplis; J.-Y. Li; J.-P. Combe; C.A. Raymond; C. T. Russell
The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.
Icarus | 2017
Susanne Schröder; S. Mottola; U. Carsenty; M. Ciarniello; R. Jaumann; J.-Y. Li; A. Longobardo; Eric E. Palmer; Carle M. Pieters; Frank Preusker; C.A. Raymond; C. T. Russell
We present a global spectrophotometric characterization of the Ceres surface using Dawn Framing Camera (FC) images. We identify the photometric model that yields the best results for photometrically correcting images. Corrected FC images acquired on approach to Ceres were assembled into global maps of albedo and color. Generally, albedo and color variations on Ceres are muted. The albedo map is dominated by a large, circular feature in Vendimia Planitia, known from HST images (Li et al., 2006), and dotted by smaller bright features mostly associated with fresh-looking craters. The dominant color variation over the surface is represented by the presence of “blue” material in and around such craters, which has a negative spectral slope over the visible wavelength range when compared to average terrain. We also mapped variations of the phase curve by employing an exponential photometric model, a technique previously applied to asteroid Vesta (Schroder et al., 2013b). The surface of Ceres scatters light differently from Vesta in the sense that the ejecta of several fresh-looking craters may be physically smooth rather than rough. High albedo, blue color, and physical smoothness all appear to be indicators of youth. The blue color may result from the desiccation of ejected material that is similar to the phyllosilicates/water ice mixtures in the experiments of Poch et al. (2016). The physical smoothness of some blue terrains would be consistent with an initially liquid condition, perhaps as a consequence of impact melting of subsurface water ice. We find red terrain (positive spectral slope) near Ernutet crater, where De Sanctis et al. (2017) detected organic material. The spectrophotometric properties of the large Vendimia Planitia feature suggest it is a palimpsest, consistent with the Marchi et al. (2016) impact basin hypothesis. The central bright area in Occator crater, Cerealia Facula, is the brightest on Ceres with an average visual normal albedo of about 0.6 at a resolution of 1.3 km per pixel (six times Ceres average). The albedo of fresh, bright material seen inside this area in the highest resolution images (35 m per pixel) is probably around unity. Cerealia Facula has an unusually steep phase function, which may be due to unresolved topography, high surface roughness, or large average particle size. It has a strongly red spectrum whereas the neighboring, less-bright, Vinalia Faculae are neutral in color. We find no evidence for a diurnal ground fog-type haze in Occator as described by Nathues et al. (2015). We can neither reproduce their findings using the same images, nor confirm them using higher resolution images. FC images have not yet offered direct evidence for present sublimation in Occator.
Geophysical Research Letters | 2016
N. Lanza; Roger C. Wiens; Raymond E. Arvidson; Benton C. Clark; Woodward W. Fischer; Ralf Gellert; John P. Grotzinger; Joel A. Hurowitz; Scott M. McLennan; Richard V. Morris; Melissa S. Rice; James F. Bell; Jeffrey A. Berger; Diana L. Blaney; Nathan T. Bridges; F. Calef; John Campbell; Samuel Michael Clegg; A. Cousin; Kenneth S. Edgett; C. Fabre; Martin R. Fisk; O. Forni; Jens Frydenvang; Keian R. Hardy; Craig Hardgrove; Jeffrey R. Johnson; J. Lasue; Stephane Le Mouelic; Michael C. Malin
The Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. Based on the strong association between Mn-oxide deposition and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.
Icarus | 2013
Susanne Schröder; T. Maue; P. Gutiérrez Marqués; S. Mottola; K.M. Aye; H. Sierks; H. U. Keller; A. Nathues
We present a method for calibrating images acquired by the Dawn Framing Camera (FC) that is based on the results of an in-flight calibration campaign performed during the cruise from Earth to Vesta. We describe this campaign and the data analysis in full. Both the primary camera FC2 and the backup camera FC1 are radiometrically and geometrically calibrated through observations of standard stars, star fields, and Solar System objects. The calibration in each spectral filter is accurate to within a few percent for point sources. Geometric distortion, small by design, is characterized with high accuracy. Dark current, monitored on a regular basis, is very low at flight operational temperatures. Out-of-field stray light was characterized using the Sun as a stray light source. In-field stray light is confirmed in narrow-band filter images of Vesta. Its magnitude and distribution are scene-dependent, and expected to contribute significantly to images of extended objects. Description of a method for in-field stray light correction is deferred to a follow-up paper, as is a discussion of the closely related topic of flat-fielding.