Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanta K. Ghosh is active.

Publication


Featured researches published by Susanta K. Ghosh.


PLOS Pathogens | 2013

Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

Viswanathan Arun Nagaraj; Balamurugan Sundaram; Nandan Mysore Varadarajan; Pradeep Annamalai Subramani; Devaiah Monnanda Kalappa; Susanta K. Ghosh; Govindarajan Padmanaban

Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS), and the last enzyme, ferrochelatase (FC), in the heme-biosynthetic pathway of Plasmodium berghei (Pb). The wild-type and knockout (KO) parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-14C] aminolevulinic acid (ALA). We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.


PLOS ONE | 2010

An Open-Label, Randomised Study of Dihydroartemisinin-Piperaquine Versus Artesunate-Mefloquine for Falciparum Malaria in Asia

Neena Valecha; Aung Pyae Phyo; Mayfong Mayxay; Paul N. Newton; Srivicha Krudsood; Sommay Keomany; Maniphone Khanthavong; Tiengkham Pongvongsa; Ronnatrai Ruangveerayuth; Chirapong Uthaisil; David Ubben; Stephan Duparc; Antonella Bacchieri; Marco Corsi; Bappanad Hk Rao; Prabash C. Bhattacharya; Nagesh Dubhashi; Susanta K. Ghosh; Vas Dev; Ashwani Kumar; Sasithon Pukittayakamee

Background The artemisinin-based combination treatment (ACT) of dihydroartemisinin (DHA) and piperaquine (PQP) is a promising novel anti-malarial drug effective against multi-drug resistant falciparum malaria. The aim of this study was to show non-inferiority of DHA/PQP vs. artesunate-mefloquine (AS+MQ) in Asia. Methods and Findings This was an open-label, randomised, non-inferiority, 63-day follow-up study conducted in Thailand, Laos and India. Patients aged 3 months to 65 years with Plasmodium falciparum mono-infection or mixed infection were randomised with an allocation ratio of 2∶1 to a fixed-dose DHA/PQP combination tablet (adults: 40 mg/160 mg; children: 20 mg/320 mg; n = 769) or loose combination of AS+MQ (AS: 50 mg, MQ: 250 mg; n = 381). The cumulative doses of study treatment over the 3 days were of about 6.75 mg/kg of DHA and 54 mg/kg of PQP and about 12 mg/kg of AS and 25 mg/kg of MQ. Doses were rounded up to the nearest half tablet. The primary endpoint was day-63 polymerase chain reaction (PCR) genotype-corrected cure rate. Results were 87.9% for DHA/PQP and 86.6% for AS+MQ in the intention-to-treat (ITT; 97.5% one-sided confidence interval, CI: >−2.87%), and 98.7% and 97.0%, respectively, in the per protocol population (97.5% CI: >−0.39%). No country effect was observed. Kaplan-Meier estimates of proportions of patients with new infections on day 63 (secondary endpoint) were significantly lower for DHA/PQP than AS+MQ: 22.7% versus 30.3% (p = 0.0042; ITT). Overall gametocyte prevalence (days 7 to 63; secondary endpoint), measured as person-gametocyte-weeks, was significantly higher for DHA/PQP than AS+MQ (10.15% versus 4.88%; p = 0.003; ITT). Fifteen serious adverse events were reported, 12 (1.6%) in DHA/PQP and three (0.8%) in AS+MQ, among which six (0.8%) were considered related to DHA/PQP and three (0.8%) to AS+MQ. Conclusions DHA/PQP was a highly efficacious drug for P. falciparum malaria in areas where multidrug parasites are prevalent. The DHA/PQP combination can play an important role in the first-line treatment of uncomplicated falciparum malaria. Trial Registration Controlled-Trials.com ISRCTN81306618


Malaria Journal | 2006

A community-based health education programme for bio-environmental control of malaria through folk theatre (Kalajatha) in rural India

Susanta K. Ghosh; Rajan R Patil; Satyanarayan Tiwari; A. P. Dash

BackgroundHealth education is an important component in disease control programme. Kalajatha is a popular, traditional art form of folk theatre depicting various life processes of a local socio-cultural setting. It is an effective medium of mass communication in the Indian sub-continent especially in rural areas. Using this medium, an operational feasibility health education programme was carried out for malaria control.MethodsIn December 2001, the Kalajatha events were performed in the evening hours for two weeks in a malaria-affected district in Karnataka State, south India. Thirty local artists including ten governmental and non-governmental organizations actively participated. Impact of this programme was assessed after two months on exposed vs. non-exposed respondents.ResultsThe exposed respondents had significant increase in knowledge and change in attitude about malaria and its control strategies, especially on bio-environmental measures (p < 0.001). They could easily associate clean water with anopheline breeding and the role of larvivorous fish in malaria control. In 2002, the local community actively co-operated and participated in releasing larvivorous fish, which subsequently resulted in a noteworthy reduction of malaria cases. Immediate behavioural changes, especially maintenance of general sanitation and hygiene did not improve as much as expected.ConclusionThis study was carried out under the primary health care system involving the local community and various potential partners. Kalajatha conveyed the important messages on malaria control and prevention to the rural community. Similar methods of communication in the health education programme should be intensified with suitable modifications to reach all sectors, if malaria needs to be controlled.


PLOS ONE | 2011

Clinical Proteomics of the Neglected Human Malarial Parasite Plasmodium vivax

Pragyan Acharya; Rani Pallavi; Syama Chandran; Vrushali Dandavate; Syed Khund Sayeed; Ankit K. Rochani; Jyoti Acharya; Sheetal Middha; Sanjay K. Kochar; Dhanpat K. Kochar; Susanta K. Ghosh; Utpal Tatu

Recent reports highlight the severity and the morbidity of disease caused by the long neglected malaria parasite Plasmodium vivax. Due to inherent difficulties in the laboratory-propagation of P. vivax, the biology of this parasite has not been adequately explored. While the proteome of P. falciparum, the causative agent of cerebral malaria, has been extensively explored from several sources, there is limited information on the proteome of P. vivax. We have, for the first time, examined the proteome of P. vivax isolated directly from patients without adaptation to laboratory conditions. We have identified 153 proteins from clinical P. vivax, majority of which do not show homology to any previously known gene products. We also report 29 new proteins that were found to be expressed in P. vivax for the first time. In addition, several proteins previously implicated as anti-malarial targets, were also found in our analysis. Most importantly, we found several unique proteins expressed by P. vivax.This study is an important step in providing insight into physiology of the parasite under clinical settings.


Journal of Biosciences | 2008

Observations on sporozoite detection in naturally infected sibling species of the Anopheles culicifacies complex and variant of Anopheles stephensi in India

Susanta K. Ghosh; Satyanarayan Tiwari; K. Raghavendra; Tiruchinapalli Sundaraj Sathyanarayan; A. P. Dash

Sporozoites were detected in naturally infected sibling species of the primary rural vector Anopheles culicifacies complex in two primary health centres (PHCs) and a variant of the urban vector Anopheles stephensi in Mangalore city, Karnataka, south India while carrying out malaria outbreak investigations from 1998–2006. Sibling species of An. culicifacies were identified based on the banding patterns on ovarian polytene chromosomes, and variants of An. stephensi were identified based on the number of ridges on the egg floats. Sporozoites were detected in the salivary glands by the dissection method. Of the total 334 salivary glands of An. culicifacies dissected, 17 (5.08%) were found to be positive for sporozoites. Of the 17 positive samples, 11 were suitable for sibling species analysis; 10 were species A (an efficient vector) and 1 was species B (a poor vector). Out of 46 An. stephensi dissected, one was sporozoite positive and belonged to the type form (an efficient vector). In malaria epidemiology this observation is useful for planning an effective vector control programme, because each sibling species/variant differs in host specificity, susceptibility to malarial parasites, breeding habitats and response to insecticides.


Malaria Journal | 2012

Therapeutic efficacy and safety of dihydroartemisinin-piperaquine versus artesunate-mefloquine in uncomplicated Plasmodium falciparum malaria in India

Nicola Gargano; David Ubben; Silva Tommasini; Antonella Bacchieri; Marco Corsi; Prabhash C. Bhattacharyya; Bappanad Hk Rao; Nagesh Dubashi; Vas Dev; Susanta K. Ghosh; Ashwani Kumar; Bina Srivastava; Neena Valecha

BackgroundResistance in Plasmodium falciparum to commonly used anti-malarial drugs, especially chloroquine, is being increasingly documented in India. By 2007, the first-line treatment for uncomplicated malaria has been revised to recommend artemisinin-based combination therapy (ACT) for all confirmed P. falciparum cases.ObjectiveThe objective of this study was to compare the efficacy, safety and tolerability between dihydroartemisinin-piperaquine (DP) and artesunate plus mefloquine (A + M) drug combinations in the treatment of uncomplicated P. falciparum malaria in India.MethodsBetween 2006 and 2007, 150 patients with acute uncomplicated P. falciparum malaria were enrolled, randomized to DP (101) or A + M (49) and followed up for 63 days as part of an open-label, non-inferiority, randomized, phase III multicenter trial in Asia.ResultsThe heterogeneity analysis showed no statistically significant difference between India and the other countries involved in the phase III study, for both the PCR-corrected and uncorrected cure rates. As shown at the whole study level, both forms of ACT were highly efficacious in India. In fact, in the per protocol population, the 63-day cure rates were 100% for A + M and 98.8% for DP. The DP combination exerted a significant post-treatment prophylactic effect, and compared with A + M a significant reduction in the incidence of new infections for DP was observed (respectively 17.1% versus 7.5% of patients experienced new infection within follow up). Parasite and fever clearance was rapid in both treatment arms (median time to parasite clearance of one day for both groups). Both DP and A + M were well tolerated, with the majority of adverse events of mild or moderate severity. The frequencies of individual adverse events were generally similar between treatments, although the incidence of post treatment adverse events was slightly higher in patients who received A + M with respect to those treated with DP.ConclusionDP is a new ACT displaying high efficacy and safety in the treatment of uncomplicated P. falciparum malaria and could potentially be considered for the first-line treatment of uncomplicated falciparum malaria in India.Trial registrationCurrent Controlled Trials ISRCTN 81306618


American Journal of Tropical Medicine and Hygiene | 2016

Epidemiology of Plasmodium vivax Malaria in India.

Anupkumar R. Anvikar; Naman K Shah; A. C. Dhariwal; Gagan Singh Sonal; Madan Mohan Pradhan; Susanta K. Ghosh; Neena Valecha

Historically, malaria in India was predominantly caused by Plasmodium vivax, accounting for 53% of the estimated cases. After the spread of drug-resistant Plasmodium falciparum in the 1990s, the prevalence of the two species remained equivalent at the national level for a decade. By 2014, the proportion of P. vivax has decreased to 34% nationally, but with high regional variation. In 2014, P. vivax accounted for around 380,000 malaria cases in India; almost a sixth of all P. vivax cases reported globally. Plasmodium vivax has remained resistant to control measures, particularly in urban areas. Urban malaria is predominantly caused by P. vivax and is subject to outbreaks, often associated with increased mortality, and triggered by bursts of migration and construction. The epidemiology of P. vivax varies substantially within India, including multiple relapse phenotypes with varying latencies between primary infection and relapse. Moreover, the hypnozoite reservoir maintains transmission potential and enables reestablishment of the parasite in areas in which it was thought eradicated. The burden of malaria in India is complex because of the highly variable malaria eco-epidemiological profiles, transmission factors, and the presence of multiple Plasmodium species and Anopheles vectors. This review of P. vivax malaria in India describes epidemiological trends with particular attention to four states: Gujarat, Karnataka, Haryana, and Odisha.


Acta Tropica | 2012

Assessing the genetic diversity of the vir genes in Indian Plasmodium vivax population

Purva Gupta; Aparup Das; O. P. Singh; Susanta K. Ghosh; Vineeta Singh

Variant surface antigens (VSAs) present on the surface of parasitized erythrocytes facilitate many Plasmodium spp. to escape the host immune system during infection. Multigene families coding for VSAs exist in several Plasmodium spp. and are located on telomeric and subtelomeric regions of the chromosomes. P. vivax genome also contains a multigene superfamily vir (variant interspersed repeats), present in the subtelomeric region with a possible role in immune evasion like the var gene in P. falciparum. Blood samples from 148 symptomatic malaria cases were collected from five different regions of India, viz. Mangalore, Rourkela, Goa, Delhi and Jabalpur. P. vivax isolates (74 single infections) were sequenced for four vir genes (viz. vir 27, vir 4, vir 12 and vir 21) and analyzed for the genetic variability existing in different populations of India. The results indicate that vir genes in different P. vivax populations in India are highly divergent both within and between the isolates. High levels of single nucleotide polymorphisms (SNPs) were observed attributing to the existing polymorphism for all the four vir genes studied across the population. Detailed knowledge of the genetic variation among the vir genes will help in understanding the evolutionary aspects of vir genes and may also provide basis for understanding the disease chronicity.


PLOS ONE | 2016

Differential Diagnosis of Malaria on Truelab Uno®, a Portable, Real-Time, MicroPCR Device for Point-Of-Care Applications

Chandrasekhar Bhaskaran Nair; Jagannath Manjula; Pradeep Annamalai Subramani; Prakash B. Nagendrappa; Mulakkapurath Narayanan Manoj; Sukriti Malpani; Phani Kumar Pullela; Pillarisetti Venkata Subbarao; Siva Ramamoorthy; Susanta K. Ghosh

Background Sensitive and specific detection of malarial parasites is crucial in controlling the significant malaria burden in the developing world. Also important is being able to identify life threatening Plasmodium falciparum malaria quickly and accurately to reduce malaria related mortality. Existing methods such as microscopy and rapid diagnostic tests (RDTs) have major shortcomings. Here, we describe a new real-time PCR-based diagnostic test device at point-of-care service for resource-limited settings. Methods Truenat® Malaria, a chip-based microPCR test, was developed by bigtec Labs, Bangalore, India, for differential identification of Plasmodium falciparum and Plasmodium vivax parasites. The Truenat Malaria tests runs on bigtec’s Truelab Uno® microPCR device, a handheld, battery operated, and easy-to-use real-time microPCR device. The performance of Truenat® Malaria was evaluated versus the WHO nested PCR protocol. The Truenat® Malaria was further evaluated in a triple-blinded study design using a sample panel of 281 specimens created from the clinical samples characterized by expert microscopy and a rapid diagnostic test kit by the National Institute of Malaria Research (NIMR). A comparative evaluation was done on the Truelab Uno® and a commercial real-time PCR system. Results The limit of detection of the Truenat Malaria assay was found to be <5 parasites/μl for both P. falciparum and P. vivax. The Truenat® Malaria test was found to have sensitivity and specificity of 100% each, compared to the WHO nested PCR protocol based on the evaluation of 100 samples. The sensitivity using expert microscopy as the reference standard was determined to be around 99.3% (95% CI: 95.5–99.9) at the species level. Mixed infections were identified more accurately by Truenat Malaria (32 samples identified as mixed) versus expert microscopy and RDTs which detected 4 and 5 mixed samples, respectively. Conclusion The Truenat® Malaria microPCR test is a valuable diagnostic tool and implementation should be considered not only for malaria diagnosis but also for active surveillance and epidemiological intervention.


Nature Communications | 2015

Asparagine requirement in Plasmodium berghei as a target to prevent malaria transmission and liver infections.

Viswanathan Arun Nagaraj; Dhanunjay Mukhi; Vinayagam Sathishkumar; Pradeep Annamalai Subramani; Susanta K. Ghosh; Rajeev R. Pandey; Manjunatha C. Shetty; Govindarajan Padmanaban

The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual- and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections.

Collaboration


Dive into the Susanta K. Ghosh's collaboration.

Top Co-Authors

Avatar

Satyanarayan Tiwari

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Neena Valecha

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

A. P. Dash

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Pradeep Annamalai Subramani

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Raghavendra

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anupkumar R. Anvikar

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Ashwani Kumar

National Institute of Malaria Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge