Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sushanta K. Mitra is active.

Publication


Featured researches published by Sushanta K. Mitra.


Journal of Materials Chemistry | 2012

Nanocrystalline ruthenium oxide dispersed Few Layered Graphene (FLG) nanoflakes as supercapacitor electrodes

Navneet Soin; Susanta Sinha Roy; Sushanta K. Mitra; Thomas Thundat; James McLaughlin

Significant enhancement in supercapacitor performance was achieved via the synthesis of nanocrystalline RuO2 on vertically aligned Few Layered Graphene (FLG) nanoflakes, synthesized on bare n-type heavily doped silicon substrates by microwave plasma chemical vapour deposition. The RuO2 nanoparticles (diameter <2 nm) were deposited using a combination of low base pressure radio frequency magnetron sputtering and subsequent electrochemical cycling in acidic media. The well-dispersed RuO2 nanoparticles on FLGs achieve a specific capacitance of the order of 650 F g−1. The specific capacitance of RuO2–FLGs is significantly higher than pristine sputtered RuO2 (∼320 F g−1) and FLGs (∼6 F g−1) indicative of the synergistic effect between the FLGs and RuO2. In addition, the fabricated RuO2–FLG supercapacitors show excellent cycling capability with approximately 70% retention of initial specific capacitance over 4000 cycles at high charging–discharging rates of 500 mV s−1. The superior electrochemical performance is attributed to the good electronic conductivity of the FLGs as well as high utilization of well-dispersed RuO2 nanoparticles on FLGs.


Journal of Colloid and Interface Science | 2009

Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow

Auro Ashish Saha; Sushanta K. Mitra

We perform three-dimensional numerical and experimental study of the dynamic contact angle using volume of fluid (VOF) method applied to microfluidic channels with integrated pillars. Initially, we evaluated different dynamic contact angle models (hydrodynamic, molecular kinetic and empirical) for capillary filling of a two-dimensional microchannel using analytical formulation. Further, the models which require a minimum prescription of adjustable parameters are only used for the study of capillary filling of microchannels with integrated pillars using different working fluids such as DI water, ethanol and isopropyl alcohol. Different microchannel geometry with varying diameter/height/spacing were studied for circular pillars. Effect of square pillars and changing the overall number of pillars on the capillary phenomena were also simulated. Our study demonstrated that the dynamic contact angle models modifies the transient response of the meniscus displacement and also the observed trends are model specific for the various microchannel geometries and working fluids. However, the different models have minimal effect on the meniscus profile. Different inlet boundary conditions were applied to observe the effect of grid resolution selected for numerical study on the capillary filling time. A grid dependent dynamic contact angle model which incorporates effective slip in the model was also used to observe the grid convergence of the numerical results. The grid independence was shown to improve marginally by applying the grid dependent dynamic contact angle model. Further we did numerical experiments of capillary filling considering variable surface wettability on the top and bottom walls of the microchannel with alternate hydrophilic-hydrophobic patterns. The meniscus front pinning was noticed for a high wetting contrast between the patterns. Non uniform streamline patterns indicated mixing of the fluid when using patterned walls. Such a microfluidic device with variable surface properties with integrated pillars may be useful for carrying out biological operations that often require effective separation and mixing of the fluids.


Micron | 2011

Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM).

Bijoyendra Bera; Sushanta K. Mitra; Douglas Vick

Berea sandstone is the building block for reservoirs containing precious hydrocarbon fuel. In this study, we comprehensively reveal the microstructure of Berea sandstone, which is often treated as a porous material with interconnected micro-pores of 2-5 μm. This has been possible due to the combined application of micro-computed tomography (CT) and focused ion beam (FIB)-scanning electron microscopy (SEM) on a Berea sample. While the use of micro-CT images are common for geological materials, the clubbing and comparison of tomography on Berea with state-of-the-art microstructure imaging techniques like FIB-SEM reveals some unforeseen features of Berea microstructure. In particular, for the first time FIB-SEM has been used to understand the micro-structure of reservoir rock material like Berea sandstone. By using these characterization tools, we are able to show that the micro-pores (less than 30 μm) are absent below the solid material matrix, and that it has small interconnected pores (30-40 μm) and large crater-like voids (100-250 μm) throughout the bulk material. Three-dimensional pore space reconstructions have been prepared from the CT images. Accordingly, characterization of Berea sandstone specimen is performed by calculation of pore-structure volumes and determination of porosity values.


Analytica Chimica Acta | 2013

Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping Electric Double Layers

Siddhartha Das; Arnab Guha; Sushanta K. Mitra

In this paper, we unravel new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with thick overlapping Electric Double Layers (EDLs). We observe that the streaming potential, for a given value of the capillary zeta (ζ) potential, varies with the EDL thickness and a dimensionless parameter R, quantifying the conduction current. Depending on the value of R, variation of the streaming potential with the EDL thickness demonstrates distinct scaling regimes: one can witness a Quadratic Regime where the streaming potential varies as the square of the EDL thickness, a Weak Regime where the streaming potential shows a weaker variation with the EDL thickness, and a Saturation Regime where the streaming potential ceases to vary with the EDL thickness. Effective viscosity, characterizing the electroviscous effect, obeys the variation of the streaming potential for smaller EDL thickness values; however, for larger EDL thickness the electroosmotic flow profile dictates the electroviscous effect, with insignificant contribution of the streaming potential.


RSC Advances | 2013

Enhanced high rate performance of α-Fe2O3 nanotubes with alginate binder as a conversion anode

P. S. Veluri; Sushanta K. Mitra

Interactive binders are of current interest to the lithium-ion battery community because they are beneficial for alloy-based anodes. They can accommodate the extra stress generated during the reaction with lithium well and alleviate the pulverization problem associated with the alloying–dealloying process. One of the best examples of an interactive binder is sodium alginate, which has recently being used in silicon-based anodes. The silicon–alginate binder combination has exhibited excellent electrochemical reactivity and stability. Herein, we have utilized the interactive properties of the alginate binder along with the hollow nanostructural features of α-Fe2O3 nanotubes in order to achieve an excellent conversion-based anode for lithium-ion batteries. In this regard, α-Fe2O3 is synthesized using a simple hydrothermal method and the hollow nanostructured α-Fe2O3 nanotubes have shown a stable high capacities of about 800 mAh g−1 at 503 mA g−1 for 50 cycles with alginate binder. Even at a high current rate of 1007 mA g−1 (∼1C), high capacity of 732 mAh g−1 and 600 mAh g−1 has been achieved after 50 and 100 cycles respectively. The same electrode assembly has shown an excellent high rate capability and delivered a capacity of 400 mAh g−1 even at a very high current density of 10 A g −1. In this report we propose that weak hydrogen bonding between the surface hydroxyl groups on the metal oxide (Fe2O3) and the carboxylic functional groups on the alginate binder is responsible for the enhanced battery performance at very high current rates.


Langmuir | 2010

Contact Angle Hysteresis of Microbead Suspensions

Prashant R. Waghmare; Sushanta K. Mitra

Microbead suspensions are often used in microfluidic devices for transporting biomolecules. An experimental investigation on the wettability of microbead suspension is presented in this study. The variation in the surface tension and the equilibrium contact angle with the change in the volume fraction of the microbead is presented here. The surface tension of the microbead suspension is measured with the pendant drop technique, whereas the dynamic contact angle measurements, i.e., advancing and receding contact angles, are measured with the sessile drop technique. An equilibrium contact angle of a suspension with particular volume fraction is determined by computing an average over the measured advancing and receding contact angles. It is observed that the surface tension and the equilibrium contact angle determined from advancing and receding contact angles vary with the magnitude of the microbeads volume fraction in the suspension. A decrease in the surface tension with an increase in the volume fraction of the microbead suspension is observed. The advancement and the recession in contact line for dynamic contact angle measurements are achieved with the motorized dosing mechanism. For microbead suspensions, the advancement of the contact line is faster as compared to the recession of the contact line for the same flow rate. The presence of microbeads assists in the advancement and the recession of the contact line of the suspension. A decrease in the equilibrium contact angles with an increase in the microbead suspension volume fraction is observed. Inclusion of microbeads in the suspension increases the wetting capability for the considered combination of the microbead suspension and substrate. Finally, empirical correlations for the surface tension and the contact angle of the suspension as a function of microbead volume fraction are proposed. Such correlations can readily be used to develop mechanistic models for the capillary transport of microbead suspensions related to LOC applications.


Analytical Methods | 2014

Mobile Water Kit (MWK): a smartphone compatible low-cost water monitoring system for rapid detection of total coliform and E. coli

Naga Siva Kumar Gunda; Selvaraj Naicker; Sujit Shinde; Sanjay Kimbahune; Sandhya Shrivastava; Sushanta K. Mitra

In this work, we have developed and demonstrated a rapid and low-cost water monitoring sensor that can simultaneously detect total coliform and Escherichia coli (E. coli) bacteria in contaminated drinking water samples. The test method, called Mobile Water Kit (MWK), comprises a set of custom chemical reagents that would serve as colorimetric or fluorometric chemosensors, syringe filter units and a smartphone platform that would serve as the detection/analysis system. The MWK provides information about the presence/absence of total coliform and E. coli in water samples. The MWK has preliminarily been tested for its selectivity, sensitivity and accuracy, with samples of known concentrations of bacteria. The MWK has also been tested with contaminated water samples collected during the two field trials conducted in Canada and India, and the obtained results were confirmed with conventional laboratory methods. With this MWK, we were able to detect the total coliform and E. coli bacteria in water samples within 30 min or less, depending on the concentration of the bacteria. For one of the field samples, the MWK was able to detect the total coliform within 35 s, which is faster than any rapid test methods available in the market. This new technology can dramatically improve the response times for the outbreak of water-borne diseases and will help water managers and individuals to assess the quality of water sources.


Langmuir | 2013

Simulations of Droplet Coalescence in Simple Shear Flow

Orest Shardt; J.J. Derksen; Sushanta K. Mitra

Simulating droplet coalescence is challenging because small-scale (tens of nanometers) phenomena determine the behavior of much larger (micrometer- to millimeter-scale) droplets. In general, liquid droplets colliding in a liquid medium coalesce when the capillary number is less than a critical value. We present simulations of droplet collisions and coalescence in simple shear flow using the free-energy binary-liquid lattice Boltzmann method. In previous simulations of low-speed collisions, droplets coalesced at unrealistically high capillary numbers. Simulations of noncoalescing droplets have not been reported, and therefore, the critical capillary number for simulated collisions was unknown. By simulating droplets with radii up to 100 lattice nodes, we determine the critical capillary number for coalescence and quantify the effects of several numerical and geometric parameters. The simulations were performed with a well-resolved interface, a Reynolds number of one, and capillary numbers from 0.01 to 0.2. The ratio of the droplet radius and interface thickness has the greatest effect on the critical capillary number. As in experiments, the critical capillary number decreases with increasing droplet size. A second numerical parameter, the interface diffusivity (Péclet number) also influences the conditions for coalescence: coalescence occurs at higher capillary numbers with lower Péclet numbers (higher diffusivity). The effects of the vertical offset between the droplets and the confinement of the droplets were also studied. Physically reasonable results were obtained and provide insight into the conditions for coalescence. Simulations that match the conditions of experiments reported in the literature remain computationally impractical. However, the scale of the simulations is now sufficiently large that a comparison with experiments involving smaller droplets (≈10 μm) and lower viscosities (≈10(-6) m(2)/s, the viscosity of water) may be possible. Experiments at these conditions are therefore needed to determine the interface thickness and Péclet number that should be used for predictive simulations of coalescence phenomena.


Biomicrofluidics | 2010

Modeling of dielectrophoretic transport of myoglobin molecules in microchannels

Naga Siva Kumar Gunda; Sushanta K. Mitra

Myoglobin is one of the premature identifying cardiac markers, whose concentration increases from 90 pgml or less to over 250 ngml in the blood serum of human beings after minor heart attack. Separation, detection, and quantification of myoglobin play a vital role in revealing the cardiac arrest in advance, which is the challenging part of ongoing research. In the present work, one of the electrokinetic approaches, i.e., dielectrophoresis (DEP), is chosen to separate the myoglobin. A mathematical model is developed for simulating dielectrophoretic behavior of a myoglobin molecule in a microchannel to provide a theoretical basis for the above application. This model is based on the introduction of a dielectrophoretic force and a dielectric myoglobin model. A dielectric myoglobin model is developed by approximating the shape of the myoglobin molecule as sphere, oblate, and prolate spheroids. A generalized theoretical expression for the dielectrophoretic force acting on respective shapes of the molecule is derived. The microchannel considered for analysis has an array of parallel rectangular electrodes at the bottom surface. The potential and electric field distributions are calculated using Greens theorem method and finite element method. These results also compared to the Fourier series method, closed form solutions by Morgan et al. [J. Phys. D: Appl. Phys. 34, 1553 (2001)] and Chang et al. [J. Phys. D: Appl. Phys. 36, 3073 (2003)]. It is observed that both Greens theorem based analytical solution and finite element based numerical solution for proposed model are closely matched for electric field and square electric field gradients. The crossover frequency is obtained as 40 MHz for given properties of myoglobin and for all approximated shapes of myoglobin molecule. The effect of conductivity of medium and myoglobin on the crossover frequency is also demonstrated. Further, the effect of hydration layer on the crossover frequency of myoglobin molecules is also presented. Both positive and negative DEP effects on myoglobin molecules are obtained by switching the frequency of applied electric field. The effect of different shapes of myoglobin on DEP force is studied and no significant effect on DEP force is observed. Finally, repulsion of myoglobin molecules from the electrode plane at 1 KHz frequency and 10 V applied voltage is observed. These results provide the ability of applying DEP force for manipulating nanosized biomolecules such as myoglobin.


Scientific Reports | 2015

Under-water superoleophobicity of fish scales

Prashant R. Waghmare; Naga Siva Kumar Gunda; Sushanta K. Mitra

Recent surge in the development of superhydrophobic/superoleophobic surfaces has been motivated by surfaces like fish scales that have hierarchical structures, which are believed to promote water or oil repellency. In this work, we show that the under-water oil repellency of fish scales is entirely due to the mucus layer formation as part of its defense mechanism, which produces unprecedented contact angle close to 180°. We have identified the distinct chemical signatures that are responsible for such large contact angle, thereby making fish scale behave highly superoleophobic inside the water medium. In absence of the mucus layer, it is found that the contact angle decreases quite dramatically to around 150°, making it less oleophobic, the degree of such oleophobicity can then be contributed to its inherent hierarchical structures. Hence, through this systematic study, for the first time we have conclusively shown the role of the fishs mucus layer to generate superoleophobicity and negate the common notion that hierarchical structure is the only reason for such intrinsic behavior of the fish scales.

Collaboration


Dive into the Sushanta K. Mitra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suman Chakraborty

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Auro Ashish Saha

Indian Institute of Technology Bombay

View shared research outputs
Researchain Logo
Decentralizing Knowledge