Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sushravya Raghunath is active.

Publication


Featured researches published by Sushravya Raghunath.


European Respiratory Journal | 2014

Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis

Fabien Maldonado; Teng Moua; Srinivasan Rajagopalan; Ronald A. Karwoski; Sushravya Raghunath; Paul A. Decker; Thomas E. Hartman; Brian J. Bartholmai; Richard A. Robb; Jay H. Ryu

Accurate assessment of prognosis in idiopathic pulmonary fibrosis remains elusive due to significant individual radiological and physiological variability. We hypothesised that short-term radiological changes may be predictive of survival. We explored the use of CALIPER (Computer-Aided Lung Informatics for Pathology Evaluation and Rating), a novel software tool developed by the Biomedical Imaging Resource Laboratory at the Mayo Clinic Rochester (Rochester, MN, USA) for the analysis and quantification of parenchymal lung abnormalities on high-resolution computed tomography. We assessed baseline and follow-up (time-points 1 and 2, respectively) high-resolution computed tomography scans in 55 selected idiopathic pulmonary fibrosis patients and correlated CALIPER-quantified measurements with expert radiologists’ assessments and clinical outcomes. Findings of interval change (mean 289 days) in volume of reticular densities (hazard ratio 1.91, p=0.006), total volume of interstitial abnormalities (hazard ratio 1.70, p=0.003) and per cent total interstitial abnormalities (hazard ratio 1.52, p=0.017) as quantified by CALIPER were predictive of survival after a median follow-up of 2.4 years. Radiologist interpretation of short-term global interstitial lung disease progression, but not specific radiological features, was also predictive of mortality. These data demonstrate the feasibility of quantifying interval short-term changes on high-resolution computed tomography and their possible use as independent predictors of survival in idiopathic pulmonary fibrosis. Short-term quantified CT changes are predictive of survival in IPF http://ow.ly/qmbjd


Journal of Thoracic Imaging | 2013

Quantitative computed tomography imaging of interstitial lung diseases.

Brian J. Bartholmai; Sushravya Raghunath; Ronald A. Karwoski; Teng Moua; Srinivasan Rajagopalan; Fabien Maldonado; Paul A. Decker; Richard A. Robb

Purpose: High-resolution chest computed tomography (HRCT) is essential in the characterization of interstitial lung disease. The HRCT features of some diseases can be diagnostic. Longitudinal monitoring with HRCT can assess progression of interstitial lung disease; however, subtle changes in the volume and character of abnormalities can be difficult to assess. Accuracy of diagnosis can be dependent on expertise and experience of the radiologist, pathologist, or clinician. Quantitative analysis of thoracic HRCT has the potential to determine the extent of disease reproducibly, classify the types of abnormalities, and automate the diagnostic process. Materials and Methods: Novel software that utilizes histogram signatures to characterize pulmonary parenchyma was used to analyze chest HRCT data, including retrospective processing of clinical CT scans and research data from the Lung Tissue Research Consortium. Additional information including physiological, pathologic, and semiquantitative radiologist assessment was available to allow comparison of quantitative results, with visual estimates of the disease, physiological parameters, and measures of disease outcome. Results: Quantitative analysis results were provided in regional volumetric quantities for statistical analysis and a graphical representation. These results suggest that quantitative HRCT analysis can serve as a biomarker with physiological, pathologic, and prognostic significance. Conclusions: It is likely that quantitative analysis of HRCT can be used in clinical practice as a means to aid in identifying a probable diagnosis, stratifying prognosis in early disease, and consistently determining progression of the disease or response to therapy. Further optimization of quantitative techniques and longitudinal analysis of well-characterized subjects would be helpful in validating these methods.


Journal of Thoracic Oncology | 2013

Noninvasive Characterization of the Histopathologic Features of Pulmonary Nodules of the Lung Adenocarcinoma Spectrum using Computer-Aided Nodule Assessment and Risk Yield (CANARY)—A Pilot Study

Fabien Maldonado; Jennifer M. Boland; Sushravya Raghunath; Marie Christine Aubry; Brian J. Bartholmai; Mariza DeAndrade; Thomas E. Hartman; Ronald A. Karwoski; Srinivasan Rajagopalan; Anne Marie Sykes; Ping Yang; Eunhee S. Yi; Richard A. Robb; Tobias Peikert

Introduction: Pulmonary nodules of the adenocarcinoma spectrum are characterized by distinctive morphological and radiologic features and variable prognosis. Noninvasive high-resolution computed tomography–based risk stratification tools are needed to individualize their management. Methods: Radiologic measurements of histopathologic tissue invasion were developed in a training set of 54 pulmonary nodules of the adenocarcinoma spectrum and validated in 86 consecutively resected nodules. Nodules were isolated and characterized by computer-aided analysis, and data were analyzed by Spearman correlation, sensitivity, and specificity and the positive and negative predictive values. Results: Computer-aided nodule assessment and risk yield (CANARY) can noninvasively characterize pulmonary nodules of the adenocarcinoma spectrum. Unsupervised clustering analysis of high-resolution computed tomography data identified nine unique exemplars representing the basic radiologic building blocks of these lesions. The exemplar distribution within each nodule correlated well with the proportion of histologic tissue invasion, Spearman R = 0.87, p < 0.0001 and 0.89 and p < 0.0001 for the training and the validation set, respectively. Clustering of the exemplars in three-dimensional space corresponding to tissue invasion and lepidic growth was used to develop a CANARY decision algorithm that successfully categorized these pulmonary nodules as “aggressive” (invasive adenocarcinoma) or “indolent” (adenocarcinoma in situ and minimally invasive adenocarcinoma). Sensitivity, specificity, positive predictive value, and negative predictive value of this approach for the detection of aggressive lesions were 95.4, 96.8, 95.4, and 96.8%, respectively, in the training set and 98.7, 63.6, 94.9, and 87.5%, respectively, in the validation set. Conclusion: CANARY represents a promising tool to noninvasively risk stratify pulmonary nodules of the adenocarcinoma spectrum.


American Journal of Respiratory and Critical Care Medicine | 2015

Noninvasive Computed Tomography–based Risk Stratification of Lung Adenocarcinomas in the National Lung Screening Trial

Fabien Maldonado; Fenghai Duan; Sushravya Raghunath; Srinivasan Rajagopalan; Ronald A. Karwoski; Kavita Garg; Erin Greco; Hrudaya Nath; Richard A. Robb; Brian J. Bartholmai; Tobias Peikert

RATIONALE Screening for lung cancer using low-dose computed tomography (CT) reduces lung cancer mortality. However, in addition to a high rate of benign nodules, lung cancer screening detects a large number of indolent cancers that generally belong to the adenocarcinoma spectrum. Individualized management of screen-detected adenocarcinomas would be facilitated by noninvasive risk stratification. OBJECTIVES To validate that Computer-Aided Nodule Assessment and Risk Yield (CANARY), a novel image analysis software, successfully risk stratifies screen-detected lung adenocarcinomas based on clinical disease outcomes. METHODS We identified retrospective 294 eligible patients diagnosed with lung adenocarcinoma spectrum lesions in the low-dose CT arm of the National Lung Screening Trial. The last low-dose CT scan before the diagnosis of lung adenocarcinoma was analyzed using CANARY blinded to clinical data. Based on their parametric CANARY signatures, all the lung adenocarcinoma nodules were risk stratified into three groups. CANARY risk groups were compared using survival analysis for progression-free survival. MEASUREMENTS AND MAIN RESULTS A total of 294 patients were included in the analysis. Kaplan-Meier analysis of all the 294 adenocarcinoma nodules stratified into the Good, Intermediate, and Poor CANARY risk groups yielded distinct progression-free survival curves (P < 0.0001). This observation was confirmed in the unadjusted and adjusted (age, sex, race, and smoking status) progression-free survival analysis of all stage I cases. CONCLUSIONS CANARY allows the noninvasive risk stratification of lung adenocarcinomas into three groups with distinct post-treatment progression-free survival. Our results suggest that CANARY could ultimately facilitate individualized management of incidentally or screen-detected lung adenocarcinomas.


Journal of Thoracic Oncology | 2014

Noninvasive risk stratification of lung adenocarcinoma using quantitative computed tomography

Sushravya Raghunath; Fabien Maldonado; Srinivasan Rajagopalan; Ronald A. Karwoski; Zackary S. DePew; Brian J. Bartholmai; Tobias Peikert; Richard A. Robb

Introduction: Lung cancer remains the leading cause of cancer-related deaths in the United States and worldwide. Adenocarcinoma is the most common type of lung cancer and encompasses lesions with widely variable clinical outcomes. In the absence of noninvasive risk stratification, individualized patient management remains challenging. Consequently a subgroup of pulmonary nodules of the lung adenocarcinoma spectrum is likely treated more aggressively than necessary. Methods: Consecutive patients with surgically resected pulmonary nodules of the lung adenocarcinoma spectrum (lesion size ⩽3 cm, 2006–2009) and available presurgical high-resolution computed tomography (HRCT) imaging were identified at Mayo Clinic Rochester. All cases were classified using an unbiased Computer-Aided Nodule Assessment and Risk Yield (CANARY) approach based on the quantification of presurgical HRCT characteristics. CANARY-based classification was independently correlated to postsurgical progression-free survival. Results: CANARY analysis of 264 consecutive patients identified three distinct subgroups. Independent comparisons of 5-year disease-free survival (DFS) between these subgroups demonstrated statistically significant differences in 5-year DFS, 100%, 72.7%, and 51.4%, respectively (p = 0.0005). Conclusions: Noninvasive CANARY-based risk stratification identifies subgroups of patients with pulmonary nodules of the adenocarcinoma spectrum characterized by distinct clinical outcomes. This technique may ultimately improve the current expert opinion-based approach to the management of these lesions by facilitating individualized patient management.


Journal of Thoracic Imaging | 2015

Pulmonary nodule characterization, including computer analysis and quantitative features

Brian J. Bartholmai; Chi Wan Koo; Geoffrey B. Johnson; Darin White; Sushravya Raghunath; Srinivasan Rajagopalan; Michael R. Moynagh; Rebecca M. Lindell; Thomas E. Hartman

Pulmonary nodules are commonly detected in computed tomography (CT) chest screening of a high-risk population. The specific visual or quantitative features on CT or other modalities can be used to characterize the likelihood that a nodule is benign or malignant. Visual features on CT such as size, attenuation, location, morphology, edge characteristics, and other distinctive “signs” can be highly suggestive of a specific diagnosis and, in general, be used to determine the probability that a specific nodule is benign or malignant. Change in size, attenuation, and morphology on serial follow-up CT, or features on other modalities such as nuclear medicine studies or MRI, can also contribute to the characterization of lung nodules. Imaging analytics can objectively and reproducibly quantify nodule features on CT, nuclear medicine, and magnetic resonance imaging. Some quantitative techniques show great promise in helping to differentiate benign from malignant lesions or to stratify the risk of aggressive versus indolent neoplasm. In this article, we (1) summarize the visual characteristics, descriptors, and signs that may be helpful in management of nodules identified on screening CT, (2) discuss current quantitative and multimodality techniques that aid in the differentiation of nodules, and (3) highlight the power, pitfalls, and limitations of these various techniques.


PLOS ONE | 2014

Quantitative Stratification of Diffuse Parenchymal Lung Diseases

Sushravya Raghunath; Srinivasan Rajagopalan; Ronald A. Karwoski; Fabien Maldonado; Tobias Peikert; Teng Moua; Jay H. Ryu; Brian J. Bartholmai; Richard A. Robb

Diffuse parenchymal lung diseases (DPLDs) are characterized by widespread pathological changes within the pulmonary tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases remains challenging and their clinical course is characterized by variable disease progression. These challenges have hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes) and pathological features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction for DPLD patients.


Seminars in Thoracic and Cardiovascular Surgery | 2016

Computer-Aided Nodule Assessment and Risk Yield Risk Management of Adenocarcinoma: The Future of Imaging?

Finbar Foley; Srinivasan Rajagopalan; Sushravya Raghunath; Jennifer M. Boland; Ronald A. Karwoski; Fabien Maldonado; Brian J. Bartholmai; Tobias Peikert

Increased clinical use of chest high-resolution computed tomography results in increased identification of lung adenocarcinomas and persistent subsolid opacities. However, these lesions range from very indolent to extremely aggressive tumors. Clinically relevant diagnostic tools to noninvasively risk stratify and guide individualized management of these lesions are lacking. Research efforts investigating semiquantitative measures to decrease interrater and intrarater variability are emerging, and in some cases steps have been taken to automate this process. However, many such methods currently are still suboptimal, require validation and are not yet clinically applicable. The computer-aided nodule assessment and risk yield software application represents a validated tool for the automated, quantitative, and noninvasive tool for risk stratification of adenocarcinoma lung nodules. Computer-aided nodule assessment and risk yield correlates well with consensus histology and postsurgical patient outcomes, and therefore may help to guide individualized patient management, for example, in identification of nodules amenable to radiological surveillance, or in need of adjunctive therapy.


medical image computing and computer assisted intervention | 2011

Referenceless stratification of parenchymal lung abnormalities

Sushravya Raghunath; Srinivasan Rajagopalan; Ronald A. Karwoski; Brian J. Bartholmai; Richard A. Robb

This paper introduces computational tools that could enable personalized, predictive, preemptive, and participatory (P4) Pulmonary medicine. We demonstrate approaches to (a) stratify lungs from different subjects based on the spatial distribution of parenchymal abnormality and (b) visualize the stratification through glyphs that convey both the grouping efficacy and an iconic overview of an individuals lung wellness. Affinity propagation based on regional parenchymal abnormalities is used in the referenceless stratification. Abnormalities are computed using supervised classification based on Earth Movers distance. Twenty natural clusters were detected from 372 CT lung scans. The computed clusters correlated with clinical consensus of 9 disease types. The quality of inter- and intra-cluster stratification as assessed by ANOSIM R was 0.887 +/- 0.18 (pval < 0.0005). The proposed tools could serve as biomarkers to objectively diagnose pathology, track progression and assess pharmacologic response within and across patients.


Journal of Thoracic Imaging | 2017

Short-term Automated Quantification of Radiologic Changes in the Characterization of Idiopathic Pulmonary Fibrosis Versus Nonspecific Interstitial Pneumonia and Prediction of Long-term Survival

Federica De Giacomi; Sushravya Raghunath; Ronald A. Karwoski; Brian J. Bartholmai; Teng Moua

Purpose: Fibrotic interstitial lung diseases presenting with nonspecific and overlapping radiologic findings may be difficult to diagnose without surgical biopsy. We hypothesized that baseline quantifiable radiologic features and their short-term interval change may be predictive of underlying histologic diagnosis as well as long-term survival in idiopathic pulmonary fibrosis (IPF) presenting without honeycombing versus nonspecific interstitial pneumonia (NSIP). Materials and Methods: Forty biopsy-confirmed IPF and 20 biopsy-confirmed NSIP patients with available high-resolution chest computed tomography 4 to 24 months apart were studied. CALIPER software was used for the automated characterization and quantification of radiologic findings. Results: IPF subjects were older (66 vs. 48; P<0.0001) with lower diffusion capacity for carbon monoxide and higher volumes of baseline reticulation (193 vs. 83 mL; P<0.0001). Over the interval period, compared with NSIP, IPF patients experienced greater functional decline (forced vital capacity, −6.3% vs. −1.7%; P=0.02) and radiologic progression, as noted by greater increase in reticulation volume (24 vs. 1.74 mL; P=0.048), and decrease in normal (−220 vs. −37.7 mL; P=0.045) and total lung volumes (−198 vs. 58.1 mL; P=0.03). Older age, male gender, higher reticulation volumes at baseline, and greater interval decrease in normal lung volumes were predictive of IPF. Both baseline and short-term changes in quantitative radiologic findings were predictive of mortality. Conclusions: Baseline quantitative radiologic findings and assessment of short-term disease progression may help characterize underlying IPF versus NSIP in those with difficult to differentiate clinicoradiologic presentations. Our study supports the possible utility of assessing serial quantifiable high-resolution chest computed tomographic findings for disease differentiation in these 2 entities.

Collaboration


Dive into the Sushravya Raghunath's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge