Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susumu Minamisawa is active.

Publication


Featured researches published by Susumu Minamisawa.


Nature Medicine | 2002

ErbB2 is essential in the prevention of dilated cardiomyopathy

Steven A. Crone; You Yang Zhao; Lian Fan; Yusu Gu; Susumu Minamisawa; Yang Liu; Kirk L. Peterson; Ju Chen; Ronald Kahn; Gianluigi Condorelli; John Ross; Kenneth R. Chien; Kuo-Fen Lee

Amplification of the gene encoding the ErbB2 (Her2/neu) receptor tyrosine kinase is critical for the progression of several forms of breast cancer. In a large-scale clinical trial, treatment with Herceptin (trastuzumab), a humanized blocking antibody against ErbB2, led to marked improvement in survival. However, cardiomyopathy was uncovered as a mitigating side effect, thereby suggesting an important role for ErbB2 signaling as a modifier of human heart failure. To investigate the physiological role of ErbB2 signaling in the adult heart, we generated mice with a ventricular-restricted deletion of Erbb2. These ErbB2-deficient conditional mutant mice were viable and displayed no overt phenotype. However, physiological analysis revealed the onset of multiple independent parameters of dilated cardiomyopathy, including chamber dilation, wall thinning and decreased contractility. Additionally, cardiomyocytes isolated from these conditional mutants were more susceptible to anthracycline toxicity. ErbB2 signaling in cardiomyocytes is therefore essential for the prevention of dilated cardiomyopathy.


Nature | 2002

Fibulin-5/DANCE is essential for elastogenesis in vivo.

Tomoyuki Nakamura; Pilar Ruiz Lozano; Yasuhiro Ikeda; Yoshitaka Iwanaga; Aleksander Hinek; Susumu Minamisawa; Ching-Feng Cheng; Kazuhiro Kobuke; Nancy D. Dalton; Yoshikazu Takada; Kei Tashiro; John Ross; Tasuku Honjo; Kenneth R. Chien

The elastic fibre system has a principal role in the structure and function of various types of organs that require elasticity, such as large arteries, lung and skin. Although elastic fibres are known to be composed of microfibril proteins (for example, fibrillins and latent transforming growth factor (TGF)-β-binding proteins) and polymerized elastin, the mechanism of their assembly and development is not well understood. Here we report that fibulin-5 (also known as DANCE), a recently discovered integrin ligand, is an essential determinant of elastic fibre organization. fibulin-5-/- mice generated by gene targeting exhibit a severely disorganized elastic fibre system throughout the body. fibulin-5-/- mice survive to adulthood, but have a tortuous aorta with loss of compliance, severe emphysema, and loose skin (cutis laxa). These tissues contain fragmented elastin without an increase of elastase activity, indicating defective development of elastic fibres. Fibulin-5 interacts directly with elastic fibres in vitro, and serves as a ligand for cell surface integrins αvβ3, αvβ5 and α9β1 through its amino-terminal domain. Thus, fibulin-5 may provide anchorage of elastic fibres to cells, thereby acting to stabilize and organize elastic fibres in the skin, lung and vasculature.


Cell | 1999

Chronic Phospholamban–Sarcoplasmic Reticulum Calcium ATPase Interaction Is the Critical Calcium Cycling Defect in Dilated Cardiomyopathy

Susumu Minamisawa; Masahiko Hoshijima; Guoxiang Chu; Christopher A. Ward; Konrad Frank; Yusu Gu; Maryann E. Martone; Yibin Wang; John Ross; Evangelia G. Kranias; Wayne R. Giles; Kenneth R. Chien

Dilated cardiomyopathy and end-stage heart failure result in multiple defects in cardiac excitation-contraction coupling. Via complementation of a genetically based mouse model of dilated cardiomyopathy, we now provide evidence that progressive chamber dilation and heart failure are dependent on a Ca2+ cycling defect in the cardiac sarcoplasmic reticulum. The ablation of a muscle-specific sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) inhibitor, phospholamban, rescued the spectrum of phenotypes that resemble human heart failure. Inhibition of phospholamban-SERCA2a interaction via in vivo expression of a phospholamban point mutant dominantly activated the contractility of ventricular muscle cells. Thus, interfering with phospholamban-SERCA2a interaction may provide a novel therapeutic approach for preventing the progression of dilated cardiomyopathy.


Nature Medicine | 2002

Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery

Masahiko Hoshijima; Yasuhiro Ikeda; Yoshitaka Iwanaga; Susumu Minamisawa; Moto-o Date; Yusu Gu; Mitsuo Iwatate; Manxiang Li; Lili Wang; James M. Wilson; Yibin Wang; John Ross; Kenneth R. Chien

The feasibility of gene therapy for cardiomyopathy, heart failure and other chronic cardiac muscle diseases is so far unproven. Here, we developed an in vivo recombinant adeno-associated virus (rAAV) transcoronary delivery system that allows stable, high efficiency and relatively cardiac-selective gene expression. We used rAAV to express a pseudophosphorylated mutant of human phospholamban (PLN), a key regulator of cardiac sarcoplasmic reticulum (SR) Ca2+ cycling in BIO14.6 cardiomyopathic hamsters. The rAAV/S16EPLN treatment enhanced myocardial SR Ca2+ uptake and suppressed progressive impairment of left ventricular (LV) systolic function and contractility for 28–30 weeks, thereby protecting cardiac myocytes from cytopathic plasma-membrane disruption. Low LV systolic pressure and deterioration in LV relaxation were also largely prevented by rAAV/S16EPLN treatment. Thus, transcoronary gene transfer of S16EPLN via rAAV vector is a potential therapy for progressive dilated cardiomyopathy and associated heart failure.


Journal of Clinical Investigation | 1999

Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure

Valerie P. Sah; Susumu Minamisawa; Steven Tam; Thomas H. Wu; Gerald W. Dorn; John Ross; Kenneth R. Chien; Joan Heller Brown

RhoA is a low-molecular-weight GTPase that has been implicated in the regulation of hypertrophic cardiac muscle cell growth. To study the role of RhoA in control of cardiac function in vivo, transgenic mice expressing wild-type and constitutively activated forms of RhoA under the control of the cardiac-specific alpha-myosin heavy chain promoter were generated. Transgene-positive mice expressing high levels of either wild-type or activated RhoA showed pronounced atrial enlargement and manifested a lethal phenotype, often preceded by generalized edema, with most animals dying over the course of a few weeks. Echocardiographic analysis of visibly healthy wild-type RhoA transgenic mice revealed no significant change in left ventricular function. As their condition deteriorated, significant dilation of the left ventricular chamber and associated decreases in left ventricular contractility were detected. Heart rate was grossly depressed in both wild-type and activated RhoA-expressing mice, even prior to the onset of ventricular failure. Electrocardiography showed evidence of atrial fibrillation and atrioventricular block. Interestingly, muscarinic receptor blockade with atropine did not elicit a positive chronotropic response in the transgenic mice. We suggest that RhoA regulates cardiac sinus and atrioventricular nodal function and that its overexpression results in bradycardia and development of ventricular failure.


Cell | 2000

A Novel Genetic Pathway for Sudden Cardiac Death via Defects in the Transition between Ventricular and Conduction System Cell Lineages

Vân T.B Nguyêñ-Trân; Steven W. Kubalak; Susumu Minamisawa; Céline Fiset; Kai C Wollert; Anne B Brown; Pilar Ruiz-Lozano; Stéphanie Barrere-Lemaire; Richard P. Kondo; Lisa W Norman; Robert G. Gourdie; Marc M. Rahme; Gregory K. Feld; Robert B. Clark; Wayne R. Giles; Kenneth R. Chien

HF-1 b, an SP1 -related transcription factor, is preferentially expressed in the cardiac conduction system and ventricular myocytes in the heart. Mice deficient for HF-1 b survive to term and exhibit normal cardiac structure and function but display sudden cardiac death and a complete penetrance of conduction system defects, including spontaneous ventricular tachycardia and a high incidence of AV block. Continuous electrocardiographic recordings clearly documented cardiac arrhythmogenesis as the cause of death. Single-cell analysis revealed an anatomic substrate for arrhythmogenesis, including a decrease and mislocalization of connexins and a marked increase in action potential heterogeneity. Two independent markers reveal defects in the formation of ventricular Purkinje fibers. These studies identify a novel genetic pathway for sudden cardiac death via defects in the transition between ventricular and conduction system cell lineages.


Journal of Clinical Investigation | 2006

Chronic activation of the prostaglandin receptor EP4 promotes hyaluronan-mediated neointimal formation in the ductus arteriosus

Utako Yokoyama; Susumu Minamisawa; Hong Quan; Shibnath Ghatak; Toru Akaike; Eri Segi-Nishida; Shiho Iwasaki; Mari Iwamoto; Suniti Misra; Kouichi Tamura; Hideaki Hori; Shumpei Yokota; Bryan P. Toole; Yukihiko Sugimoto; Yoshihiro Ishikawa

PGE, a potent vasodilator, plays a primary role in maintaining the patency of the ductus arteriosus (DA). Genetic disruption of the PGE-specific receptor EP4, however, paradoxically results in fatal patent DA (PDA) in mice. Here we demonstrate that EP4-mediated signals promote DA closure by hyaluronic acid-mediated (HA-mediated) intimal cushion formation (ICF). Chronic EP4 stimulation by ONO-AE1-329, a selective EP4 agonist, significantly enhanced migration and HA production in rat DA smooth muscle cells. When HA production was inhibited, EP4-mediated migration was negated. Activation of EP4, adenylyl cyclase, and PKA all increased HA production and the level of HA synthase 2 (HAS2) transcripts. In immature rat DA explants, ICF was promoted by EP4/PKA stimuli. Furthermore, adenovirus-mediated Has2 gene transfer was sufficient to induce ICF in EP4-disrupted DA explants in which the intimal cushion had not formed. Accordingly, signals through EP4 have 2 essential roles in DA development, namely, vascular dilation and ICF. The latter would lead to luminal narrowing, helping adhesive occlusion and permanent closure of the vascular lumen. Our results imply that HA induction serves as an alternative therapeutic strategy for the treatment of PDA to the current one, i.e., inhibition of PGE signaling by cyclooxygenase inhibitors, which might delay PGE-mediated ICF in immature infants.


Biochemical and Biophysical Research Communications | 2003

Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy.

Susumu Minamisawa; Yoji Sato; Yuriko Tatsuguchi; Tomofumi Fujino; Shinichiro Imamura; Yoshio Uetsuka; Makoto Nakazawa; Rumiko Matsuoka

Phospholamban is an endogenous inhibitor of sarcoplasmic reticulum calcium ATPase and plays a prime role in cardiac contractility and relaxation. Phospholamban may be a candidate gene responsible for cardiomyopathy. We investigated genome sequence of phospholamban in patients with cardiomyopathy. PCR-based direct sequence was performed for the promoter region and the whole coding region of phospholamban in 87 hypertrophic, 10 dilated, and 2 restricted cardiomyopathic patients. We found a heterozygous single nucleotide transition from A to G at -77-bp upstream of the transcription start site in the phospholamban promoter region of one patient with familial hypertrophic cardiomyopathy. This nucleotide change was not found in 296 control subjects. Using neonatal rat cardiomyocytes, the mutation, -77A-->G, increased the phospholamban promoter activity. No nucleotide change in the phospholamban coding region was found in 99 patients with cardiomyopathy. We suspect that the mutation plays an important role in the development of hypertrophic cardiomyopathy.


Journal of Biological Chemistry | 2008

Hyaluronan constitutively regulates activation of COX-2-mediated cell survival activity in intestinal epithelial and colon carcinoma cells

Suniti Misra; Lina M. Obeid; Yusuf A. Hannun; Susumu Minamisawa; Franklin G. Berger; Roger R. Markwald; Bryan P. Toole; Shibnath Ghatak

Hyaluronan is a major component of the pericellular matrix surrounding tumor cells, including colon carcinomas. Elevated cycooxygenase-2 levels have been implicated in several malignant properties of colon cancer. We now show for the first time a strong link between hyaluronan-CD44 interaction and cyclooxygenase-2 in colon cancer cells. First, we have shown that increased expression of hyaluronan synthase-2 induces malignant cell properties, including increased proliferation, anchorage-independent growth, and epithelial-mesenchymal transition in HIEC6 cells. Second, constitutive hyaluronan-CD44 interaction stimulates a signaling pathway involving ErbB2, phosphoinositide 3-kinase/AKT, β-catenin, and cyclooxygenase-2/prostaglandin E2 in HCA7 colon carcinoma cells. Third, the HA/CD44-activated ErbB2 → phosphoinositide 3-kinase/AKT → β-catenin pathway stimulates cell survival/cell proliferation through COX-2 induction in hyaluronan-overexpressing HIEC6 cells and in HCA7 cells. Fourth, perturbation of hyaluronan-CD44 interaction by hyaluronan oligomers or CD44-silencing RNA decreases cyclooxygenase-2 expression and enzyme activity, and inhibition of cyclooxygenase-2 decreases hyaluronan production suggesting the possibility of an amplifying positive feedback loop between hyaluronan and cyclooxygenase-2. We conclude that hyaluronan is an important endogenous regulator of colon cancer cell survival properties and that cyclooxygenase-2 is a major mediator of these hyaluronan-induced effects. Defining hyaluronan-dependent cyclooxygenase-2/prostaglandin E2-associated signaling pathways will provide a platform for developing novel therapeutic approaches for colon cancer.


Molecular and Cellular Biology | 2005

Congenital Semilunar Valvulogenesis Defect in Mice Deficient in Phospholipase Cε

Makoto Tadano; Hironori Edamatsu; Susumu Minamisawa; Utako Yokoyama; Yoshihiro Ishikawa; Noboru Suzuki; Hiromitsu Saito; Dongmei Wu; Misa Masago-Toda; Yuriko Yamawaki-Kataoka; Tomiyoshi Setsu; Toshio Terashima; Sakan Maeda; Takaya Satoh; Tohru Kataoka

ABSTRACT Phospholipase Cε is a novel class of phosphoinositide-specific phospholipase C, identified as a downstream effector of Ras and Rap small GTPases. We report here the first genetic analysis of its physiological function with mice whose phospholipase Cε is catalytically inactivated by gene targeting. The hearts of mice homozygous for the targeted allele develop congenital malformations of both the aortic and pulmonary valves, which cause a moderate to severe degree of regurgitation with mild stenosis and result in ventricular dilation. The malformation involves marked thickening of the valve leaflets, which seems to be caused by a defect in valve remodeling at the late stages of semilunar valvulogenesis. This phenotype has a remarkable resemblance to that of mice carrying an attenuated epidermal growth factor receptor or deficient in heparin-binding epidermal growth factor-like growth factor. Smad1/5/8, which is implicated in proliferation of the valve cells downstream of bone morphogenetic protein, shows aberrant activation at the margin of the developing semilunar valve tissues in embryos deficient in phospholipase Cε. These results suggest a crucial role of phospholipase Cε downstream of the epidermal growth factor receptor in controlling semilunar valvulogenesis through inhibition of bone morphogenetic protein signaling.

Collaboration


Dive into the Susumu Minamisawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Utako Yokoyama

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Toru Akaike

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Motohiko Sato

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Shumpei Yokota

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Mari Iwamoto

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge